{"title":"An interface tracking method with triangle edge cuts","authors":"Mengdi Wang , Matthew Cong , Bo Zhu","doi":"10.1016/j.jcp.2024.113504","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a volume-conserving interface tracking algorithm on unstructured triangle meshes. We propose to discretize the interface via <em>triangle edge cuts</em> which represent the intersections between the interface and the triangle mesh edges using a compact 6 numbers per triangle. This enables an efficient implicit representation of the sub-triangle polygonal material regions without explicitly storing connectivity information. Moreover, we propose an efficient advection algorithm for this interface representation that is based on geometric queries and does not require an optimization process. This advection algorithm is extended via an area correction step that enforces volume-conservation of the materials. We demonstrate the efficacy of our method on a variety of advection problems on a triangle mesh and compare its performance to existing interface tracking methods including VOF and MOF.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"520 ","pages":"Article 113504"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124007526","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a volume-conserving interface tracking algorithm on unstructured triangle meshes. We propose to discretize the interface via triangle edge cuts which represent the intersections between the interface and the triangle mesh edges using a compact 6 numbers per triangle. This enables an efficient implicit representation of the sub-triangle polygonal material regions without explicitly storing connectivity information. Moreover, we propose an efficient advection algorithm for this interface representation that is based on geometric queries and does not require an optimization process. This advection algorithm is extended via an area correction step that enforces volume-conservation of the materials. We demonstrate the efficacy of our method on a variety of advection problems on a triangle mesh and compare its performance to existing interface tracking methods including VOF and MOF.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.