Design of key term separated identification model for fractional input nonlinear output error systems: Auxiliary model based Runge Kutta optimization algorithm

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Muhammad Aown Ali , Naveed Ishtiaq Chaudhary , Taimoor Ali Khan , Wei-Lung Mao , Chien-Chou Lin , Muhammad Asif Zahoor Raja
{"title":"Design of key term separated identification model for fractional input nonlinear output error systems: Auxiliary model based Runge Kutta optimization algorithm","authors":"Muhammad Aown Ali ,&nbsp;Naveed Ishtiaq Chaudhary ,&nbsp;Taimoor Ali Khan ,&nbsp;Wei-Lung Mao ,&nbsp;Chien-Chou Lin ,&nbsp;Muhammad Asif Zahoor Raja","doi":"10.1016/j.chaos.2024.115696","DOIUrl":null,"url":null,"abstract":"<div><div>Fractional calculus generalizes the conventional calculus to real order and become a popular tool for efficient modeling of complex engineering problems by providing better insight to the system through involving historical information. In this study, fractional calculus concepts are incorporated into input nonlinear output error (INOE) system and is generalized to fractional INOE (FINOE) model through Grunwald-Letnikov differential operator. The key-term-separation based identification model is presented to estimate the parameters of FINOE system that avoids the burden of identifying extra parameters due to cross product terms. The parameter estimation of systems modeled by Hammerstein output error structure is a challenging task, especially with incorporation of fractional concepts. An auxiliary model based Runge Kutta (RUN) optimization methodology is proposed for viable estimation of FINOE parameters by using the estimate for unmeasurable terms of information vector. The mean-square-error based fitness function is developed that minimizes the difference between the actual and estimated responses of the FINOE system. The efficacy of the proposed scheme is investigated in terms of convergence speed, computational cost, resilience, stability and correctness in approximation of accurate weights of the FINOE system for multiple noise variations. The superiority of the RUN for FINOE is endorsed via comparative analysis with 8 states of the arts in noisy environments.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012487","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Fractional calculus generalizes the conventional calculus to real order and become a popular tool for efficient modeling of complex engineering problems by providing better insight to the system through involving historical information. In this study, fractional calculus concepts are incorporated into input nonlinear output error (INOE) system and is generalized to fractional INOE (FINOE) model through Grunwald-Letnikov differential operator. The key-term-separation based identification model is presented to estimate the parameters of FINOE system that avoids the burden of identifying extra parameters due to cross product terms. The parameter estimation of systems modeled by Hammerstein output error structure is a challenging task, especially with incorporation of fractional concepts. An auxiliary model based Runge Kutta (RUN) optimization methodology is proposed for viable estimation of FINOE parameters by using the estimate for unmeasurable terms of information vector. The mean-square-error based fitness function is developed that minimizes the difference between the actual and estimated responses of the FINOE system. The efficacy of the proposed scheme is investigated in terms of convergence speed, computational cost, resilience, stability and correctness in approximation of accurate weights of the FINOE system for multiple noise variations. The superiority of the RUN for FINOE is endorsed via comparative analysis with 8 states of the arts in noisy environments.
设计分数输入非线性输出误差系统的关键项分离识别模型基于辅助模型的 Runge Kutta 优化算法
分数微积分将传统微积分推广到实阶,并通过历史信息为系统提供更好的洞察力,成为复杂工程问题高效建模的常用工具。在本研究中,分数微积分概念被纳入输入非线性输出误差(INOE)系统,并通过格伦沃尔德-列特尼科夫微分算子被推广到分数 INOE(FINOE)模型。本文提出了基于关键项分离的辨识模型,用于估算 FINOE 系统的参数,从而避免了由于交叉积项造成的额外参数辨识负担。以哈默斯坦输出误差结构建模的系统的参数估计是一项具有挑战性的任务,尤其是在包含分数概念的情况下。本文提出了一种基于辅助模型的 Runge Kutta (RUN) 优化方法,利用对信息矢量中不可测量项的估计,对 FINOE 参数进行可行的估计。开发了基于均方误差的拟合函数,使 FINOE 系统的实际响应与估计响应之间的差异最小化。从收敛速度、计算成本、恢复能力、稳定性和在多种噪声变化情况下近似 FINOE 系统精确权重的正确性等方面,对所提方案的功效进行了研究。通过与噪声环境中 8 种艺术状态的比较分析,证明了 RUN 在 FINOE 中的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信