Zhuang Deng , Yu Wang , Shuo Zhang , Jingyi Wu , Shuning Wei , Zhen Jiao
{"title":"Ion-Doped Iron-Based nanoparticles with enhanced magnetic properties: Synthesis and formation mechanism via coprecipitation","authors":"Zhuang Deng , Yu Wang , Shuo Zhang , Jingyi Wu , Shuning Wei , Zhen Jiao","doi":"10.1016/j.jmmm.2024.172588","DOIUrl":null,"url":null,"abstract":"<div><div>Iron-based magnetic nanoparticles have gained significant attention in biomedicine. However, the magnetic properties of iron-based nanoparticles prepared through coprecipitation methods often do not meet application requirements. This study aims to enhance the performance of iron-based magnetic nanoparticles by synthesizing them via the coprecipitation method and doping them with Mn<sup>2+</sup>, Zn<sup>2+</sup>, and Co<sup>2+</sup> ions in various ratios. Among these, Zn-doped nanoparticles with a 0.6 ratio (ZION-6) exhibits the highest saturation magnetization intensity of 98 emu/g sample and the highest r<sub>2</sub> values of 165.2 mM<sup>−1</sup>·s<sup>−1</sup>, making them an effective T<sub>2</sub> MRI contrast agent. Our investigation into the coprecipitation process revealed a formation mechanism for ion-doped magnetic iron-based nanoparticles. This mechanism involves the formation of an intermediate phase, α-FeOOH, followed by phase transformation, ion doping, and the aggregation of small particles to yield the final magnetic nanoparticles. This research could pave the way for developing magnetic nanoparticles with improved properties for biomedical applications.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"611 ","pages":"Article 172588"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885324008795","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Iron-based magnetic nanoparticles have gained significant attention in biomedicine. However, the magnetic properties of iron-based nanoparticles prepared through coprecipitation methods often do not meet application requirements. This study aims to enhance the performance of iron-based magnetic nanoparticles by synthesizing them via the coprecipitation method and doping them with Mn2+, Zn2+, and Co2+ ions in various ratios. Among these, Zn-doped nanoparticles with a 0.6 ratio (ZION-6) exhibits the highest saturation magnetization intensity of 98 emu/g sample and the highest r2 values of 165.2 mM−1·s−1, making them an effective T2 MRI contrast agent. Our investigation into the coprecipitation process revealed a formation mechanism for ion-doped magnetic iron-based nanoparticles. This mechanism involves the formation of an intermediate phase, α-FeOOH, followed by phase transformation, ion doping, and the aggregation of small particles to yield the final magnetic nanoparticles. This research could pave the way for developing magnetic nanoparticles with improved properties for biomedical applications.
期刊介绍:
The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public.
Main Categories:
Full-length articles:
Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged.
In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications.
The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications.
The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism.
Review articles:
Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.