{"title":"Landmark-aware autonomous odometry correction and map pruning for planetary rovers","authors":"Chenxi Lu , Meng Yu , Hua Li , Hutao Cui","doi":"10.1016/j.actaastro.2024.10.025","DOIUrl":null,"url":null,"abstract":"<div><div>Planetary rover autonomous localization is paramount for a planetary surface exploration mission. However, existing methods demonstrate limited localization accuracy, mostly due to the unstructured texture characterization of planetary surface. In response, this study presents a novel Neural Radiance Field (NeRF) driven visual odometry correction method that allows for high-precision 6-DoF rover pose estimation and local map pruning. First, an innovative image saliency evaluation approach, combining binarization and feature detection, is introduced to meticulously select landmarks that are conducive to rover re-localization. Subsequently, we conduct 3D reconstruction and rendering of the chosen landmarks based on <em>a-priori</em> knowledge of planetary surface images and their Neural Radiance Field (NeRF) models. High-precision odometry correction is achieved through the optimization of photometric loss between NeRF rending images and real images. Simultaneously, the odometry correction mechanism is employed in an autonomous manner to refine the NeRF model of the corresponding landmark, leading to an improved local map and gradually enhanced rover localization accuracy. Numerical simulation and experiment trials are carried out to evaluate the performance of the proposed method, results of which demonstrate state-of-the-art rover re-localization accuracy and local map pruning.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 86-96"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009457652400599X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Planetary rover autonomous localization is paramount for a planetary surface exploration mission. However, existing methods demonstrate limited localization accuracy, mostly due to the unstructured texture characterization of planetary surface. In response, this study presents a novel Neural Radiance Field (NeRF) driven visual odometry correction method that allows for high-precision 6-DoF rover pose estimation and local map pruning. First, an innovative image saliency evaluation approach, combining binarization and feature detection, is introduced to meticulously select landmarks that are conducive to rover re-localization. Subsequently, we conduct 3D reconstruction and rendering of the chosen landmarks based on a-priori knowledge of planetary surface images and their Neural Radiance Field (NeRF) models. High-precision odometry correction is achieved through the optimization of photometric loss between NeRF rending images and real images. Simultaneously, the odometry correction mechanism is employed in an autonomous manner to refine the NeRF model of the corresponding landmark, leading to an improved local map and gradually enhanced rover localization accuracy. Numerical simulation and experiment trials are carried out to evaluate the performance of the proposed method, results of which demonstrate state-of-the-art rover re-localization accuracy and local map pruning.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.