Modelling and dynamic analysis of a synchropter

IF 5 1区 工程技术 Q1 ENGINEERING, AEROSPACE
Giulia Bertolani , Emanuele L. de Angelis , Fabrizio Giulietti , Marilena D. Pavel
{"title":"Modelling and dynamic analysis of a synchropter","authors":"Giulia Bertolani ,&nbsp;Emanuele L. de Angelis ,&nbsp;Fabrizio Giulietti ,&nbsp;Marilena D. Pavel","doi":"10.1016/j.ast.2024.109664","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the flight dynamics modelling, trim, and dynamic analysis of an intermeshing-rotor helicopter, indicated as synchropter. This configuration has gained a great interest for its suitability within heavy load lifting and transportation in extreme high temperature and altitude, and other harsh environments. The paper presents some relevant features related to synchropter's flight dynamics modelling of the interference between its two tilted main rotors. Trim results show the advantage of the synchropter in forward flight where the yawing moment is naturally balanced at almost all speeds and no lateral-directional compensation is needed. The synchropter's dynamic stability shows similarity to a conventional helicopter in the longitudinal phugoid. However, in the lateral phugoid, the synchropter is unstable at all flying speeds and therefore its vertical fin needs to be carefully designed.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109664"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824007934","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the flight dynamics modelling, trim, and dynamic analysis of an intermeshing-rotor helicopter, indicated as synchropter. This configuration has gained a great interest for its suitability within heavy load lifting and transportation in extreme high temperature and altitude, and other harsh environments. The paper presents some relevant features related to synchropter's flight dynamics modelling of the interference between its two tilted main rotors. Trim results show the advantage of the synchropter in forward flight where the yawing moment is naturally balanced at almost all speeds and no lateral-directional compensation is needed. The synchropter's dynamic stability shows similarity to a conventional helicopter in the longitudinal phugoid. However, in the lateral phugoid, the synchropter is unstable at all flying speeds and therefore its vertical fin needs to be carefully designed.
同步器的建模和动态分析
本文论述了同步旋翼直升机的飞行动力学建模、修整和动态分析。这种构型因其适用于在极端高温、高海拔和其他恶劣环境下的重型负载吊装和运输而备受关注。本文介绍了同步螺旋桨飞行器两个倾斜主旋翼之间干扰的飞行动力学建模的一些相关特点。试验结果表明,同步飞行器在向前飞行时具有优势,几乎在所有速度下都能自然平衡偏航力矩,无需进行横向补偿。同步飞行器的动态稳定性在纵向凤尾形上与传统直升机相似。但是,在横向飞行时,同步飞行器在所有飞行速度下都不稳定,因此需要对其垂直鳍进行精心设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aerospace Science and Technology
Aerospace Science and Technology 工程技术-工程:宇航
CiteScore
10.30
自引率
28.60%
发文量
654
审稿时长
54 days
期刊介绍: Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to: • The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites • The control of their environment • The study of various systems they are involved in, as supports or as targets. Authors are invited to submit papers on new advances in the following topics to aerospace applications: • Fluid dynamics • Energetics and propulsion • Materials and structures • Flight mechanics • Navigation, guidance and control • Acoustics • Optics • Electromagnetism and radar • Signal and image processing • Information processing • Data fusion • Decision aid • Human behaviour • Robotics and intelligent systems • Complex system engineering. Etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信