Efficient license plate recognition in unconstrained scenarios

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Chao Wei , Fei Han , Zizhu Fan , Linrui Shi , Cheng Peng
{"title":"Efficient license plate recognition in unconstrained scenarios","authors":"Chao Wei ,&nbsp;Fei Han ,&nbsp;Zizhu Fan ,&nbsp;Linrui Shi ,&nbsp;Cheng Peng","doi":"10.1016/j.jvcir.2024.104314","DOIUrl":null,"url":null,"abstract":"<div><div>Automatic license plate recognition (ALPR) is a critical technology for intelligent transportation systems. Most existing ALPR methods are focused on specific application scenarios. Although there are a few methods that focus on unconstrained scenarios, they are very time-consuming. In this work, we propose an efficient ALPR (EALPR) framework, where we can handle distorted license plates (LP) caused by perspective problems with high efficiency. We design a light LPD structure based on efficient object detection methods and use anchor-free strategies for LPD to alleviate the problem of expensive costs. Benefitting from these optimizations and a united framework structure, the proposed EALPR has real-time efficiency. We evaluate our method on five datasets and the results show that our method achieves state-of-the-art accuracy: 98.15% on OpenALPR(EU), 95.61% on OpenALPR(BR), 99.51% on AOLP(RP), 88.81% on SSIG, 79.41% on CD-HARD. Additionally, our method achieves an impressive speed of 74.9 FPS (Frames Per Second), outperforming existing approaches and demonstrating its efficiency. Our source code can be accessed at <span><span>https://github.com/wechao18/Efficient-alpr-unconstrained</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"104 ","pages":"Article 104314"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002700","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic license plate recognition (ALPR) is a critical technology for intelligent transportation systems. Most existing ALPR methods are focused on specific application scenarios. Although there are a few methods that focus on unconstrained scenarios, they are very time-consuming. In this work, we propose an efficient ALPR (EALPR) framework, where we can handle distorted license plates (LP) caused by perspective problems with high efficiency. We design a light LPD structure based on efficient object detection methods and use anchor-free strategies for LPD to alleviate the problem of expensive costs. Benefitting from these optimizations and a united framework structure, the proposed EALPR has real-time efficiency. We evaluate our method on five datasets and the results show that our method achieves state-of-the-art accuracy: 98.15% on OpenALPR(EU), 95.61% on OpenALPR(BR), 99.51% on AOLP(RP), 88.81% on SSIG, 79.41% on CD-HARD. Additionally, our method achieves an impressive speed of 74.9 FPS (Frames Per Second), outperforming existing approaches and demonstrating its efficiency. Our source code can be accessed at https://github.com/wechao18/Efficient-alpr-unconstrained.
无约束场景下的高效车牌识别
自动车牌识别(ALPR)是智能交通系统的一项关键技术。现有的 ALPR 方法大多侧重于特定的应用场景。虽然也有一些方法专注于无约束场景,但它们都非常耗时。在这项工作中,我们提出了一种高效 ALPR(EALPR)框架,可以高效处理因透视问题导致的车牌(LP)变形。我们设计了一种基于高效物体检测方法的轻型 LPD 结构,并在 LPD 中使用无锚策略来减轻昂贵的成本问题。得益于这些优化和统一的框架结构,所提出的 EALPR 具有实时效率。我们在五个数据集上评估了我们的方法,结果表明我们的方法达到了最先进的准确率:OpenALPR(EU) 98.15%、OpenALPR(BR) 95.61%、AOLP(RP) 99.51%、SSIG 88.81%、CD-HARD 79.41%。此外,我们的方法达到了令人印象深刻的 74.9 FPS(每秒帧数)的速度,超越了现有方法,证明了其效率。我们的源代码可通过 https://github.com/wechao18/Efficient-alpr-unconstrained 访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信