Brian Christensen, Thomas F. Krüger, Thilde P. Hjorth, Emilie Holkgaard Buhl, Esben S. Sørensen
{"title":"Milk osteopontin mediates zinc uptake in intestinal cells in the presence of phytic acid","authors":"Brian Christensen, Thomas F. Krüger, Thilde P. Hjorth, Emilie Holkgaard Buhl, Esben S. Sørensen","doi":"10.1016/j.idairyj.2024.106113","DOIUrl":null,"url":null,"abstract":"<div><div>The bioavailability and the intestinal absorption of the essential mineral zinc are challenged by the food matrix and especially the content of zinc chelating antinutrients. Many milk proteins and peptides affect zinc bioavailability. Osteopontin (OPN) is an acidic and highly phosphorylated whey protein that has been shown to bind calcium, magnesium and iron. Here we report the zinc binding properties of OPN, and the effect of OPN-Zn complexes on zinc absorption in Caco-2 cells. By isothermal titration calorimetry milk OPN was shown to bind approximately 36 zinc ions (<em>K</em><sub>D</sub> of ∼70 μM). The binding was mainly mediated by the phosphorylations in the protein. OPN retained zinc bound after <em>in vitro</em> simulated gastrointestinal transit. Interestingly the OPN-Zn complex enhanced zinc bioavailability in the presence of phytic acid, compared to inorganic zinc salts. Zinc uptake mediated by OPN significantly upregulated the gene expression of MT1G and ZnT1 which are crucial proteins involved in preserving enterocyte zinc homoeostasis. These results indicate that OPN could be incorporated into functional foods and infant formulas to increase zinc bioavailability and uptake.</div></div>","PeriodicalId":13854,"journal":{"name":"International Dairy Journal","volume":"161 ","pages":"Article 106113"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Dairy Journal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958694624002334","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The bioavailability and the intestinal absorption of the essential mineral zinc are challenged by the food matrix and especially the content of zinc chelating antinutrients. Many milk proteins and peptides affect zinc bioavailability. Osteopontin (OPN) is an acidic and highly phosphorylated whey protein that has been shown to bind calcium, magnesium and iron. Here we report the zinc binding properties of OPN, and the effect of OPN-Zn complexes on zinc absorption in Caco-2 cells. By isothermal titration calorimetry milk OPN was shown to bind approximately 36 zinc ions (KD of ∼70 μM). The binding was mainly mediated by the phosphorylations in the protein. OPN retained zinc bound after in vitro simulated gastrointestinal transit. Interestingly the OPN-Zn complex enhanced zinc bioavailability in the presence of phytic acid, compared to inorganic zinc salts. Zinc uptake mediated by OPN significantly upregulated the gene expression of MT1G and ZnT1 which are crucial proteins involved in preserving enterocyte zinc homoeostasis. These results indicate that OPN could be incorporated into functional foods and infant formulas to increase zinc bioavailability and uptake.
期刊介绍:
The International Dairy Journal publishes significant advancements in dairy science and technology in the form of research articles and critical reviews that are of relevance to the broader international dairy community. Within this scope, research on the science and technology of milk and dairy products and the nutritional and health aspects of dairy foods are included; the journal pays particular attention to applied research and its interface with the dairy industry.
The journal''s coverage includes the following, where directly applicable to dairy science and technology:
• Chemistry and physico-chemical properties of milk constituents
• Microbiology, food safety, enzymology, biotechnology
• Processing and engineering
• Emulsion science, food structure, and texture
• Raw material quality and effect on relevant products
• Flavour and off-flavour development
• Technological functionality and applications of dairy ingredients
• Sensory and consumer sciences
• Nutrition and substantiation of human health implications of milk components or dairy products
International Dairy Journal does not publish papers related to milk production, animal health and other aspects of on-farm milk production unless there is a clear relationship to dairy technology, human health or final product quality.