Learning differentiable categorical regions with Gumbel-Softmax for person re-identification

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wenjie Yang , Pei Xu
{"title":"Learning differentiable categorical regions with Gumbel-Softmax for person re-identification","authors":"Wenjie Yang ,&nbsp;Pei Xu","doi":"10.1016/j.neucom.2024.128723","DOIUrl":null,"url":null,"abstract":"<div><div>Locating diverse body parts and perceiving part visibility are essential to person re-identification (re-ID). Most existing methods employ an extra model, <em>e.g.</em>, pose estimation or human parsing, to locate parts, or generate pseudo labels to train the part locator incorporated with the re-ID model. In this paper, we aim at learning diverse horizontal stripes with foreground refinement to pursue pixel-level part alignment via only using person identity labels. Specifically, we proposed a Gumbel-Softmax based Differential Categorical Region (DCR) learning method and make two contributions. (1) A stripe-wise regularization. Given an image, the part locator produce part probability maps. The continuous values in the probability maps are discretized into zero or <span><math><mrow><mi>arg</mi><mspace></mspace><mi>max</mi></mrow></math></span> value in the horizontal stripes by the Gumbel-Softmax. Gumbel-Softmax allows us to use the <span><math><mrow><mi>arg</mi><mspace></mspace><mi>max</mi></mrow></math></span> discrete value for part diversity regularization in the forward pass, but can still estimate gradients in the backward pass. (2) A self-refinement method to suppress the background noise in the stripes. We employ a lightweight foreground perception head to produce foreground probability map with only person identity labels supervision. Benefits from discretization of the categorical stripes, we can conveniently obtain the part pseudo label by element-wise multiplying the categorical stripes with foreground probability map. Finally, DCR can locate the body parts at pixel-level and extract part-aligned representation. Experimental results on both holistic and occluded re-ID datasets confirm that our approach significantly improves the learned representation and the achieved performance is on par with the state-of-the-art methods. The code is available at <span><span>https://github.com/deepalchemist/differentiable-categorical-region</span><svg><path></path></svg></span></div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"613 ","pages":"Article 128723"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224014942","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Locating diverse body parts and perceiving part visibility are essential to person re-identification (re-ID). Most existing methods employ an extra model, e.g., pose estimation or human parsing, to locate parts, or generate pseudo labels to train the part locator incorporated with the re-ID model. In this paper, we aim at learning diverse horizontal stripes with foreground refinement to pursue pixel-level part alignment via only using person identity labels. Specifically, we proposed a Gumbel-Softmax based Differential Categorical Region (DCR) learning method and make two contributions. (1) A stripe-wise regularization. Given an image, the part locator produce part probability maps. The continuous values in the probability maps are discretized into zero or argmax value in the horizontal stripes by the Gumbel-Softmax. Gumbel-Softmax allows us to use the argmax discrete value for part diversity regularization in the forward pass, but can still estimate gradients in the backward pass. (2) A self-refinement method to suppress the background noise in the stripes. We employ a lightweight foreground perception head to produce foreground probability map with only person identity labels supervision. Benefits from discretization of the categorical stripes, we can conveniently obtain the part pseudo label by element-wise multiplying the categorical stripes with foreground probability map. Finally, DCR can locate the body parts at pixel-level and extract part-aligned representation. Experimental results on both holistic and occluded re-ID datasets confirm that our approach significantly improves the learned representation and the achieved performance is on par with the state-of-the-art methods. The code is available at https://github.com/deepalchemist/differentiable-categorical-region
利用 Gumbel-Softmax 学习可变分类区域,实现人员再识别
定位不同的身体部位和感知部位的可见度对于人员再识别(re-ID)至关重要。大多数现有方法都采用额外的模型(如姿势估计或人体解析)来定位部位,或生成伪标签来训练与再识别模型相结合的部位定位器。在本文中,我们的目标是学习具有前景细化功能的多样化水平条纹,通过仅使用人物身份标签来实现像素级的部件对齐。具体来说,我们提出了一种基于 Gumbel-Softmax 的差异分类区域(DCR)学习方法,并做出了两方面的贡献。(1) 条纹正则化。给定图像后,部件定位器会生成部件概率图。概率图中的连续值通过 Gumbel-Softmax 被离散化为水平条纹中的零值或 argmax 值。Gumbel-Softmax 可以让我们在前向遍历中使用 argmax 离散值对零件多样性进行正则化,但在后向遍历中仍然可以估计梯度。(2) 抑制条纹背景噪声的自改进方法。我们采用轻量级前景感知头,在仅有人物身份标签监督的情况下生成前景概率图。得益于分类条纹的离散化,我们可以通过将分类条纹与前景概率图元素相乘,方便地获得部分伪标签。最后,DCR 可以在像素级定位身体部位,并提取部位对齐表示。在整体数据集和遮挡再识别数据集上的实验结果证实,我们的方法显著改善了学习到的表示,其性能与最先进的方法不相上下。代码见 https://github.com/deepalchemist/differentiable-categorical-region
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信