Jia-Xuan Jiang , Hongsheng Jing , Ling Zhou , Yuee Li , Zhong Wang
{"title":"Multi-attribute balanced dataset generation framework AutoSyn and KinFace Channel-Spatial Feature Extractor for kinship recognition","authors":"Jia-Xuan Jiang , Hongsheng Jing , Ling Zhou , Yuee Li , Zhong Wang","doi":"10.1016/j.neucom.2024.128750","DOIUrl":null,"url":null,"abstract":"<div><div>In the field of kinship verification, facial recognition technology is becoming increasingly vital due to privacy concerns, ethical disputes, and the high costs associated with DNA testing. We have developed a novel method, the AutoSyn framework, to synthesize facial images and enhance kinship image datasets, effectively addressing the challenges of scale and quality in existing datasets. By employing a strategy that mixes ages and genders in the synthesized images, we minimize the impact of these factors on kinship recognition tasks. We have enhanced the original KinFaceW-I dataset by integrating ten distinct styles, including diverse combinations of gender, ethnicity, and age. This enrichment significantly improves both the quality and quantity of the images. Furthermore, this paper introduces an efficient feature extractor for kinship tasks, KinFace-CSFE, within a siamese neural network framework. This model not only utilizes meticulously designed channel feature extraction but also incorporates mixed kernel size spatial attention mechanisms to better focus on local features. We have also integrated YOCO data augmentation techniques to simulate complex imaging conditions, enhancing the model’s robustness and accuracy. The effectiveness of these innovations has been validated through experiments on the KinFaceW-I, KinFaceW-II, and synthesized Syn-KinFaceW-I datasets, achieving accuracy rates of 82.7%, 94.1%, and 83.2% respectively. These results significantly surpass both traditional models and current advanced models.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224015212","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of kinship verification, facial recognition technology is becoming increasingly vital due to privacy concerns, ethical disputes, and the high costs associated with DNA testing. We have developed a novel method, the AutoSyn framework, to synthesize facial images and enhance kinship image datasets, effectively addressing the challenges of scale and quality in existing datasets. By employing a strategy that mixes ages and genders in the synthesized images, we minimize the impact of these factors on kinship recognition tasks. We have enhanced the original KinFaceW-I dataset by integrating ten distinct styles, including diverse combinations of gender, ethnicity, and age. This enrichment significantly improves both the quality and quantity of the images. Furthermore, this paper introduces an efficient feature extractor for kinship tasks, KinFace-CSFE, within a siamese neural network framework. This model not only utilizes meticulously designed channel feature extraction but also incorporates mixed kernel size spatial attention mechanisms to better focus on local features. We have also integrated YOCO data augmentation techniques to simulate complex imaging conditions, enhancing the model’s robustness and accuracy. The effectiveness of these innovations has been validated through experiments on the KinFaceW-I, KinFaceW-II, and synthesized Syn-KinFaceW-I datasets, achieving accuracy rates of 82.7%, 94.1%, and 83.2% respectively. These results significantly surpass both traditional models and current advanced models.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.