Zaiwang Lu , Yancong Wang , Feng Dai , Yike Ma , Long Long , Zixu Zhao , Yucheng Zhang , Jintao Li
{"title":"A reinforcement learning-based optimization method for task allocation of agricultural multi-robots clusters","authors":"Zaiwang Lu , Yancong Wang , Feng Dai , Yike Ma , Long Long , Zixu Zhao , Yucheng Zhang , Jintao Li","doi":"10.1016/j.compeleceng.2024.109752","DOIUrl":null,"url":null,"abstract":"<div><div>The Agricultural multi-robot task allocation (AMRTA) can allocate the optimal operation sequence for the cluster of agricultural robots and improve overall operational efficiency, which is an important research direction for the development of intelligent agriculture. In this paper, we first analyzed the practical requirements of multi-robot task allocation in agriculture and reformulate it as Node Workload-Constrained Multi Traveling Salesman Problem (NWC-MTSP), aiming to minimize the maximum operating time of sub-robots while ensuring a balanced distribution of workload as much as possible. Then, we implemented path planning algorithm required for task allocation and constructed an objective function based on it; we also constructed a graph structure containing workloads of nodes, used graph neural networks to obtain node feature information, and propose a Reinforcement Learning-based Attention Mechanism Policy Optimization Network (NWC-APONet) method to find the optimal allocation scheme. Finally, our model evaluated using real agricultural datasets, i.e., the TSPLIB public dataset and random datasets. Experiments results demonstrate that NWC-APONet achieves superior task allocation, which prove our model’s practical applicability and effectiveness in AMRTA.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"120 ","pages":"Article 109752"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624006797","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The Agricultural multi-robot task allocation (AMRTA) can allocate the optimal operation sequence for the cluster of agricultural robots and improve overall operational efficiency, which is an important research direction for the development of intelligent agriculture. In this paper, we first analyzed the practical requirements of multi-robot task allocation in agriculture and reformulate it as Node Workload-Constrained Multi Traveling Salesman Problem (NWC-MTSP), aiming to minimize the maximum operating time of sub-robots while ensuring a balanced distribution of workload as much as possible. Then, we implemented path planning algorithm required for task allocation and constructed an objective function based on it; we also constructed a graph structure containing workloads of nodes, used graph neural networks to obtain node feature information, and propose a Reinforcement Learning-based Attention Mechanism Policy Optimization Network (NWC-APONet) method to find the optimal allocation scheme. Finally, our model evaluated using real agricultural datasets, i.e., the TSPLIB public dataset and random datasets. Experiments results demonstrate that NWC-APONet achieves superior task allocation, which prove our model’s practical applicability and effectiveness in AMRTA.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.