Mohammad Salam, Muhammad Tahir Iqbal, Raja Adnan Habib, Amna Tahir, Aamir Sultan, Talat Iqbal
{"title":"Novel application of unsupervised machine learning for characterization of subsurface seismicity, tectonic dynamics and stress distribution","authors":"Mohammad Salam, Muhammad Tahir Iqbal, Raja Adnan Habib, Amna Tahir, Aamir Sultan, Talat Iqbal","doi":"10.1016/j.acags.2024.100200","DOIUrl":null,"url":null,"abstract":"<div><div>Our study pioneers an innovative use of unsupervised machine learning, a powerful tool for navigating unclassified data, to unravel the complexities of subsurface seismic activities and extract meaningful patterns. Our central objective is to comprehensively characterize seismicity within an active region by identifying distinct seismic clusters in spatial distribution, thereby gaining a deeper understanding of subsurface stress distribution and tectonic dynamics. Employing a diverse range of clustering algorithms, with particular emphasis on Fuzzy C-Means (FCM), our research meticulously dissects the intricate physical processes that govern a complex tectonic zone. This technique effectively delineates distinct tectonic zones, aligning seamlessly with established seismological knowledge and underscoring the transformative potential of Artificial Intelligence (AI) in analyzing regional subsurface phenomena, even under conditions of data scarcity. Moreover, associating earthquakes with specific seismogenic structures significantly enhances seismic hazard analyses, potentially paving the way for autonomous insights that inform engineering hazard assessments.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"24 ","pages":"Article 100200"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197424000478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Our study pioneers an innovative use of unsupervised machine learning, a powerful tool for navigating unclassified data, to unravel the complexities of subsurface seismic activities and extract meaningful patterns. Our central objective is to comprehensively characterize seismicity within an active region by identifying distinct seismic clusters in spatial distribution, thereby gaining a deeper understanding of subsurface stress distribution and tectonic dynamics. Employing a diverse range of clustering algorithms, with particular emphasis on Fuzzy C-Means (FCM), our research meticulously dissects the intricate physical processes that govern a complex tectonic zone. This technique effectively delineates distinct tectonic zones, aligning seamlessly with established seismological knowledge and underscoring the transformative potential of Artificial Intelligence (AI) in analyzing regional subsurface phenomena, even under conditions of data scarcity. Moreover, associating earthquakes with specific seismogenic structures significantly enhances seismic hazard analyses, potentially paving the way for autonomous insights that inform engineering hazard assessments.