{"title":"Threshold-optimized and features-fused semi-supervised domain adaptation method for rotating machinery fault diagnosis","authors":"Shenquan Wang , Fangyuan Zhao , Chao Cheng , Hongtian Chen , Yulian Jiang","doi":"10.1016/j.neucom.2024.128734","DOIUrl":null,"url":null,"abstract":"<div><div>In the field of intelligent fault diagnosis, domain adaptation (DA) technology achieves significant breakthroughs, particularly in reducing reliance on large volumes of labeled samples. Despite these advancements, challenges persist when unlabeled data do not accurately represent actual application scenarios. Additionally, the impact of pseudo-labels on conditional domain adaptation raises concerns. To overcome the above challenges, a novel DA approach based on chaos sparrow search algorithm (CSSOA) optimized threshold parameters and feature fusion deep belief network (DBN) is proposed, named CSS-DADBN. Firstly, this method, by integrating pseudo-label updating with semi-supervised domain adaptation (SSDA) and employing confidence and entropy threshold parameters as corrective rules for pseudo-label filtering, along with the introduction of iterative conditions as an additional selection criterion, effectively alleviates the aforementioned issues. Furthermore, combining the feature extraction capabilities of DBN with a domain feature fusion strategy significantly enhances cross-domain feature learning, thereby substantially improving diagnostic accuracy. Ultimately, to validate the effectiveness and practicality of the CSS-DADBN method, a series of experiments conducted on the PT700 and Case Western Reserve University (CWRU) rolling bearing test platform clearly demonstrate its utility and efficiency in intelligent fault diagnosis.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224015054","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of intelligent fault diagnosis, domain adaptation (DA) technology achieves significant breakthroughs, particularly in reducing reliance on large volumes of labeled samples. Despite these advancements, challenges persist when unlabeled data do not accurately represent actual application scenarios. Additionally, the impact of pseudo-labels on conditional domain adaptation raises concerns. To overcome the above challenges, a novel DA approach based on chaos sparrow search algorithm (CSSOA) optimized threshold parameters and feature fusion deep belief network (DBN) is proposed, named CSS-DADBN. Firstly, this method, by integrating pseudo-label updating with semi-supervised domain adaptation (SSDA) and employing confidence and entropy threshold parameters as corrective rules for pseudo-label filtering, along with the introduction of iterative conditions as an additional selection criterion, effectively alleviates the aforementioned issues. Furthermore, combining the feature extraction capabilities of DBN with a domain feature fusion strategy significantly enhances cross-domain feature learning, thereby substantially improving diagnostic accuracy. Ultimately, to validate the effectiveness and practicality of the CSS-DADBN method, a series of experiments conducted on the PT700 and Case Western Reserve University (CWRU) rolling bearing test platform clearly demonstrate its utility and efficiency in intelligent fault diagnosis.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.