{"title":"A hybrid model in a nonlinear disturbance observer for improving compliance error compensation of robotic machining","authors":"Ali Khishtan , Seong Hyeon Kim , Jihyun Lee","doi":"10.1016/j.rcim.2024.102887","DOIUrl":null,"url":null,"abstract":"<div><div>The joint deflection of robots in machining degrades product accuracy. Compliance error compensation has been investigated to reduce the static deflection of robotic machining. The challenge in compliance error compensation is accurately measuring the deflection or cutting force. External sensors have been used to measure them in robotic machining, but it is not practical. The authors proposed a nonlinear disturbance observer to indirectly measure the cutting force online in robotic machining in the previous study. The observer, however, needs to utilize the robot model that includes characteristics of high nonlinearity, uncertainty, and high dynamic variation for different robot postures. After investigating these challenges of modeling, this paper proposes a hybrid modeling approach combining a physics-based model with a new empirical friction model, and a data-driven model to accurately estimate the cutting force while minimizing the error of the robot's mathematical model. The joint torque calculated from the hybrid model can cover the effect of joints' postures and speeds on the varying dynamic in its workspace. Real-time optimization just before cutting is also proposed to adapt to the real-time joint's motion conditions. The experimental results from aluminum multi-axis cutting show that the estimated cutting force via the nonlinear disturbance observer based on the proposed hybrid modeling approach can improve its accuracy up to 45% and 74% in the <em>x</em> and <em>y</em> directions respectively, compared to the physics-based modeling approach. The deflection of the tool center point can be compensated by using a compliance error compensation method up to 79.1% and 75.4% in the <em>x</em> and <em>y</em> directions, respectively, at 0.5 <em>mm/s</em> feed rate, and up to 77.2% and 78.9% at 3 <em>mm/s</em> feed rate. Consequently, the approaches developed in this paper can solve the problems of conventional robot modeling and improve the accuracy of robot machining.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102887"},"PeriodicalIF":9.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736584524001741","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The joint deflection of robots in machining degrades product accuracy. Compliance error compensation has been investigated to reduce the static deflection of robotic machining. The challenge in compliance error compensation is accurately measuring the deflection or cutting force. External sensors have been used to measure them in robotic machining, but it is not practical. The authors proposed a nonlinear disturbance observer to indirectly measure the cutting force online in robotic machining in the previous study. The observer, however, needs to utilize the robot model that includes characteristics of high nonlinearity, uncertainty, and high dynamic variation for different robot postures. After investigating these challenges of modeling, this paper proposes a hybrid modeling approach combining a physics-based model with a new empirical friction model, and a data-driven model to accurately estimate the cutting force while minimizing the error of the robot's mathematical model. The joint torque calculated from the hybrid model can cover the effect of joints' postures and speeds on the varying dynamic in its workspace. Real-time optimization just before cutting is also proposed to adapt to the real-time joint's motion conditions. The experimental results from aluminum multi-axis cutting show that the estimated cutting force via the nonlinear disturbance observer based on the proposed hybrid modeling approach can improve its accuracy up to 45% and 74% in the x and y directions respectively, compared to the physics-based modeling approach. The deflection of the tool center point can be compensated by using a compliance error compensation method up to 79.1% and 75.4% in the x and y directions, respectively, at 0.5 mm/s feed rate, and up to 77.2% and 78.9% at 3 mm/s feed rate. Consequently, the approaches developed in this paper can solve the problems of conventional robot modeling and improve the accuracy of robot machining.
期刊介绍:
The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.