Anushree Sinha , Angel Mary Chiramel Tony , Susmita Roy
{"title":"How fingers affect folding of a thumb: Inter-subdomain cooperation in the folding of SARS-CoV-2 RdRp protein","authors":"Anushree Sinha , Angel Mary Chiramel Tony , Susmita Roy","doi":"10.1016/j.bpc.2024.107342","DOIUrl":null,"url":null,"abstract":"<div><div>The RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 is a critical enzyme essential for the virus's replication and transcription, making it a key therapeutic target. The RdRp protein exhibits a characteristic cupped right-hand shaped structure with two vital subdomains: the fingers and the thumb. Despite being distinct, biophysical experiments suggest that these subdomains cooperate to facilitate RNA accommodation, ensuring RdRp functionality. To investigate the structure-based mechanisms underlying the fingers-thumb interaction in both apo and RNA-bound RdRp, we constructed a coarse-grained structure-based model based on recent cryo-electron microscopy data. The simulations reveal frequent open-to-closed conformational transitions in apo RdRp, akin to a breathing-like motion. These conformational changes are regulated by the fingers-thumb association and the folding dynamics of the thumb subdomain. The thumb adopts a stable fold only when tethered by the fingers-thumb interface; when these subdomains are disconnected, the thumb transitions into an open state. A significant number of open-to-closed transition events were analyzed to generate a transition contact probability map, which highlights a few specific residues at the thumb-fingers interface, distant from the RNA accommodation sites, as essential for inducing the thumb's folding process. Given that thumb subdomain folding is critical for RNA binding and viral replication, the study proposes that these interfacial residues may function as remote regulatory switches and could be targeted for the development of allosteric drugs against SARS-CoV-2 and similar RNA viruses.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"316 ","pages":"Article 107342"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462224001716","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 is a critical enzyme essential for the virus's replication and transcription, making it a key therapeutic target. The RdRp protein exhibits a characteristic cupped right-hand shaped structure with two vital subdomains: the fingers and the thumb. Despite being distinct, biophysical experiments suggest that these subdomains cooperate to facilitate RNA accommodation, ensuring RdRp functionality. To investigate the structure-based mechanisms underlying the fingers-thumb interaction in both apo and RNA-bound RdRp, we constructed a coarse-grained structure-based model based on recent cryo-electron microscopy data. The simulations reveal frequent open-to-closed conformational transitions in apo RdRp, akin to a breathing-like motion. These conformational changes are regulated by the fingers-thumb association and the folding dynamics of the thumb subdomain. The thumb adopts a stable fold only when tethered by the fingers-thumb interface; when these subdomains are disconnected, the thumb transitions into an open state. A significant number of open-to-closed transition events were analyzed to generate a transition contact probability map, which highlights a few specific residues at the thumb-fingers interface, distant from the RNA accommodation sites, as essential for inducing the thumb's folding process. Given that thumb subdomain folding is critical for RNA binding and viral replication, the study proposes that these interfacial residues may function as remote regulatory switches and could be targeted for the development of allosteric drugs against SARS-CoV-2 and similar RNA viruses.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.