{"title":"Yu-Shiba-Rusinov bound states boost surface odd-frequency pairing","authors":"Subhajit Pal, Colin Benjamin","doi":"10.1016/j.physe.2024.116127","DOIUrl":null,"url":null,"abstract":"<div><div>We predict that the appearance of zero-energy Yu-Shiba-Rusinov(YSR) bound states in two different setups, metal-spin flipper-metal-s-wave superconductor (<span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mi>s</mi><mi>f</mi><mo>−</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mi>S</mi></mrow></math></span>) and superconductor-metal-spin flipper-metal-superconductor (<span><math><mrow><mi>S</mi><mo>−</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mi>s</mi><mi>f</mi><mo>−</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mi>S</mi></mrow></math></span>) junctions, can cause a multi-fold enhancement of surface odd-frequency superconducting pairing. On the other hand, in the absence of these bound states, even-frequency pairing dominates surface odd-frequency pairing. Specifically, in the <span><math><mrow><mi>S</mi><mo>−</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mi>s</mi><mi>f</mi><mo>−</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mi>S</mi></mrow></math></span> Josephson junction, the emergence of zero energy YSR bound states leads to a <span><math><mrow><mn>0</mn><mo>−</mo><mi>π</mi></mrow></math></span> junction transition and surface odd-frequency pairing dominance. Notably, odd-frequency pairing vanishes in the absence of the YSR-bound states. Interestingly, the equal spin–triplet pairing is the dominant component in odd-frequency superconductivity in both setups, which could have important implications for superconducting spintronics. Overall, our findings may help to detect the presence of YSR-bound states through the observation of surface odd-frequency pairing and contribute to a better understanding of their relationship.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"166 ","pages":"Article 116127"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724002315","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We predict that the appearance of zero-energy Yu-Shiba-Rusinov(YSR) bound states in two different setups, metal-spin flipper-metal-s-wave superconductor () and superconductor-metal-spin flipper-metal-superconductor () junctions, can cause a multi-fold enhancement of surface odd-frequency superconducting pairing. On the other hand, in the absence of these bound states, even-frequency pairing dominates surface odd-frequency pairing. Specifically, in the Josephson junction, the emergence of zero energy YSR bound states leads to a junction transition and surface odd-frequency pairing dominance. Notably, odd-frequency pairing vanishes in the absence of the YSR-bound states. Interestingly, the equal spin–triplet pairing is the dominant component in odd-frequency superconductivity in both setups, which could have important implications for superconducting spintronics. Overall, our findings may help to detect the presence of YSR-bound states through the observation of surface odd-frequency pairing and contribute to a better understanding of their relationship.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures