Han Cao , Jinquan Zhang , Long Chen , Siyuan Li , Guang Shi
{"title":"ServlessSimPro: A comprehensive serverless simulation platform","authors":"Han Cao , Jinquan Zhang , Long Chen , Siyuan Li , Guang Shi","doi":"10.1016/j.future.2024.107558","DOIUrl":null,"url":null,"abstract":"<div><div>Serverless computing represents an emerging paradigm within cloud computing, characterized by the fundamental concept of enabling developers to run applications without the need for concerns related to the management of underlying servers. Although there are several mature serverless computing platforms currently exist, there is limited availability of open-source simulation platforms that can accurately simulate the characteristics of serverless environments and provide a free and convenient tool for researchers to conduct investigations. Furthermore, existing simulation platforms do not provide comprehensive interfaces for scheduling strategies and do not provide the diverse monitoring metrics required by researchers. In response to this gap, we have developed the ServlessSimPro simulation platform. This platform offers the most comprehensive set of scheduling algorithms, diverse evaluation metrics, and extensive interfaces and parameters among all existing serverless simulators. The experimental results demonstrate that the scheduling algorithm of the simulator can effectively reduce latency, enhance resource utilization, and decrease energy consumption.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"163 ","pages":"Article 107558"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24005223","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Serverless computing represents an emerging paradigm within cloud computing, characterized by the fundamental concept of enabling developers to run applications without the need for concerns related to the management of underlying servers. Although there are several mature serverless computing platforms currently exist, there is limited availability of open-source simulation platforms that can accurately simulate the characteristics of serverless environments and provide a free and convenient tool for researchers to conduct investigations. Furthermore, existing simulation platforms do not provide comprehensive interfaces for scheduling strategies and do not provide the diverse monitoring metrics required by researchers. In response to this gap, we have developed the ServlessSimPro simulation platform. This platform offers the most comprehensive set of scheduling algorithms, diverse evaluation metrics, and extensive interfaces and parameters among all existing serverless simulators. The experimental results demonstrate that the scheduling algorithm of the simulator can effectively reduce latency, enhance resource utilization, and decrease energy consumption.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.