{"title":"Fiber-reinforced shotcrete lining for stabilizing rock blocks around underground cavities","authors":"","doi":"10.1016/j.trgeo.2024.101407","DOIUrl":null,"url":null,"abstract":"<div><div>Fiber-reinforced shotcrete is a high-performance material that presents some special characteristics, which can provide some suitable applications in the excavation of underground cavities. The presence of fibers induces an increase in the tensile strength, flexural strength and shear strength in the concrete, as well as allowing a ductile rather than brittle type of behavior. It can be used to create a lining of the underground cavity that allows the stabilization of rock blocks that show a tendency to slip or fall (from the side walls or from the crown area, respectively). In this work, some full-scale tests on the fiber-reinforced shotcrete lining are presented. From these tests, it was possible to measure the behavior of this material when it is loaded locally: it is the same type of action produced by the rock block when it is held back from falling or slipping. The results obtained have allowed to characterize this type of material from a mechanical point of view. A subsequent detailed analysis of the stability of rock blocks surrounding an underground cavity permitted to determine the static stabilizing contribution offered by the fiber-reinforced shotcrete lining, leading to the definition of the minimum thickness required, in relation to the type of block that is present (shape and size). It was possible to predict how a lining thickness of about 3.5 cm is able to stabilize (just 15 min after its spraying) rock blocks with an exposed surface area of up to 10 m<sup>2</sup> and a distance of the internal vertex from the border of the cavity of up to 3 <em>m</em>.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391224002289","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Fiber-reinforced shotcrete is a high-performance material that presents some special characteristics, which can provide some suitable applications in the excavation of underground cavities. The presence of fibers induces an increase in the tensile strength, flexural strength and shear strength in the concrete, as well as allowing a ductile rather than brittle type of behavior. It can be used to create a lining of the underground cavity that allows the stabilization of rock blocks that show a tendency to slip or fall (from the side walls or from the crown area, respectively). In this work, some full-scale tests on the fiber-reinforced shotcrete lining are presented. From these tests, it was possible to measure the behavior of this material when it is loaded locally: it is the same type of action produced by the rock block when it is held back from falling or slipping. The results obtained have allowed to characterize this type of material from a mechanical point of view. A subsequent detailed analysis of the stability of rock blocks surrounding an underground cavity permitted to determine the static stabilizing contribution offered by the fiber-reinforced shotcrete lining, leading to the definition of the minimum thickness required, in relation to the type of block that is present (shape and size). It was possible to predict how a lining thickness of about 3.5 cm is able to stabilize (just 15 min after its spraying) rock blocks with an exposed surface area of up to 10 m2 and a distance of the internal vertex from the border of the cavity of up to 3 m.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.