Benchmarking data handling strategies for landslide susceptibility modeling using random forest workflows

Guruh Samodra , Ngadisih , Ferman Setia Nugroho
{"title":"Benchmarking data handling strategies for landslide susceptibility modeling using random forest workflows","authors":"Guruh Samodra ,&nbsp;Ngadisih ,&nbsp;Ferman Setia Nugroho","doi":"10.1016/j.aiig.2024.100093","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning (ML) algorithms are frequently used in landslide susceptibility modeling. Different data handling strategies may generate variations in landslide susceptibility modeling, even when using the same ML algorithm. This research aims to compare the combinations of inventory data handling, cross validation (CV), and hyperparameter tuning strategies to generate landslide susceptibility maps. The results are expected to provide a general strategy for landslide susceptibility modeling using ML techniques. The authors employed eight landslide inventory data handling scenarios to convert a landslide polygon into a landslide point, i.e., the landslide point is located on the toe (minimum height), on the scarp (maximum height), at the center of the landslide, randomly inside the polygon (1 point), randomly inside the polygon (3 points), randomly inside the polygon (5 points), randomly inside the polygon (10 points), and 15 m grid sampling. Random forest models using CV–nonspatial hyperparameter tuning, spatial CV–spatial hyperparameter tuning, and spatial CV–forward feature selection–no hyperparameter tuning were applied for each data handling strategy. The combination generated 24 random forest ML workflows, which are applied using a complete inventory of 743 landslides triggered by Tropical Cyclone Cempaka (2017) in Pacitan Regency, Indonesia, and 11 landslide controlling factors. The results show that grid sampling with spatial CV and spatial hyperparameter tuning is favorable because the strategy can minimize overfitting, generate a relatively high-performance predictive model, and reduce the appearance of susceptibility artifacts in the landslide area. Careful data inventory handling, CV, and hyperparameter tuning strategies should be considered in landslide susceptibility modeling to increase the applicability of landslide susceptibility maps in practical application.</div></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"5 ","pages":"Article 100093"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544124000340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning (ML) algorithms are frequently used in landslide susceptibility modeling. Different data handling strategies may generate variations in landslide susceptibility modeling, even when using the same ML algorithm. This research aims to compare the combinations of inventory data handling, cross validation (CV), and hyperparameter tuning strategies to generate landslide susceptibility maps. The results are expected to provide a general strategy for landslide susceptibility modeling using ML techniques. The authors employed eight landslide inventory data handling scenarios to convert a landslide polygon into a landslide point, i.e., the landslide point is located on the toe (minimum height), on the scarp (maximum height), at the center of the landslide, randomly inside the polygon (1 point), randomly inside the polygon (3 points), randomly inside the polygon (5 points), randomly inside the polygon (10 points), and 15 m grid sampling. Random forest models using CV–nonspatial hyperparameter tuning, spatial CV–spatial hyperparameter tuning, and spatial CV–forward feature selection–no hyperparameter tuning were applied for each data handling strategy. The combination generated 24 random forest ML workflows, which are applied using a complete inventory of 743 landslides triggered by Tropical Cyclone Cempaka (2017) in Pacitan Regency, Indonesia, and 11 landslide controlling factors. The results show that grid sampling with spatial CV and spatial hyperparameter tuning is favorable because the strategy can minimize overfitting, generate a relatively high-performance predictive model, and reduce the appearance of susceptibility artifacts in the landslide area. Careful data inventory handling, CV, and hyperparameter tuning strategies should be considered in landslide susceptibility modeling to increase the applicability of landslide susceptibility maps in practical application.

Abstract Image

利用随机森林工作流程为滑坡易发性建模的数据处理策略制定基准
机器学习(ML)算法经常用于滑坡易感性建模。即使使用相同的 ML 算法,不同的数据处理策略也可能导致滑坡易感性建模的差异。本研究旨在比较库存数据处理、交叉验证(CV)和超参数调整策略的组合,以生成滑坡易感性图。研究结果有望为使用 ML 技术进行滑坡易感性建模提供通用策略。作者采用了八种滑坡清单数据处理方案,将滑坡多边形转换为滑坡点,即滑坡点位于坡脚(最小高度)、坡面(最大高度)、滑坡中心、多边形内随机(1 点)、多边形内随机(3 点)、多边形内随机(5 点)、多边形内随机(10 点)和 15 米网格采样。每种数据处理策略都采用了 CV-非空间超参数调整、空间 CV-空间超参数调整和空间 CV-前向特征选择-无超参数调整的随机森林模型。组合生成了 24 个随机森林 ML 工作流,并将其应用于印尼帕契坦地区热带气旋 "肯帕卡"(2017 年)引发的 743 次滑坡的完整清单和 11 个滑坡控制因素。结果表明,网格采样加上空间 CV 和空间超参数调整是有利的,因为该策略可以最大限度地减少过拟合,生成性能相对较高的预测模型,并减少滑坡区域易感性假象的出现。在滑坡易感性建模中应考虑谨慎的数据清单处理、CV 和超参数调整策略,以提高滑坡易感性图在实际应用中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信