Stability of Llarull's theorem in all dimensions

IF 1.5 1区 数学 Q1 MATHEMATICS
Sven Hirsch , Yiyue Zhang
{"title":"Stability of Llarull's theorem in all dimensions","authors":"Sven Hirsch ,&nbsp;Yiyue Zhang","doi":"10.1016/j.aim.2024.109980","DOIUrl":null,"url":null,"abstract":"<div><div>Llarull's theorem characterizes the round sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> among all spin manifolds whose scalar curvature is bounded from below by <span><math><mi>n</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. In this paper we show that if the scalar curvature is bounded from below by <span><math><mi>n</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>−</mo><mi>ε</mi></math></span>, the underlying manifold is <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span>-close to a finite number of spheres outside a small bad set. This completely solves Gromov's spherical stability problem and is the first instance of a scalar curvature stability result that both holds in all dimensions and is stated without any additional geometrical or topological assumptions.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109980"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004961","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Llarull's theorem characterizes the round sphere Sn among all spin manifolds whose scalar curvature is bounded from below by n(n1). In this paper we show that if the scalar curvature is bounded from below by n(n1)ε, the underlying manifold is C0-close to a finite number of spheres outside a small bad set. This completely solves Gromov's spherical stability problem and is the first instance of a scalar curvature stability result that both holds in all dimensions and is stated without any additional geometrical or topological assumptions.
拉鲁尔定理在所有维度上的稳定性
拉鲁尔定理描述了所有标量曲率自下而上受 n(n-1) 约束的自旋流形中圆球 Sn 的特征。在本文中,我们证明了如果标量曲率自下而上受 n(n-1)-ε 约束,则底层流形在一个小的坏集之外与有限数量的球面是 C0-接近的。这完全解决了格罗莫夫的球面稳定性问题,是标量曲率稳定性结果的第一个实例,它既在所有维度上都成立,又无需任何额外的几何或拓扑假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信