{"title":"The Brown-Peterson spectrum is not E2(p2+2) at odd primes","authors":"Andrew Senger","doi":"10.1016/j.aim.2024.109996","DOIUrl":null,"url":null,"abstract":"<div><div>We show that the odd-primary Brown-Peterson spectrum BP does not admit the structure of an <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mo>)</mo></mrow></msub></math></span> ring spectrum and that there can be no map <span><math><mrow><mi>MU</mi></mrow><mo>→</mo><mrow><mi>BP</mi></mrow></math></span> of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>3</mn></mrow></msub></math></span> ring spectra. We also prove the same results for truncated Brown-Peterson spectra <span><math><mrow><mi>BP</mi></mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></math></span> of height <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>. This extends results of Lawson at the prime 2.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109996"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824005127","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that the odd-primary Brown-Peterson spectrum BP does not admit the structure of an ring spectrum and that there can be no map of ring spectra. We also prove the same results for truncated Brown-Peterson spectra of height . This extends results of Lawson at the prime 2.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.