{"title":"The inequalities of Chern classes and Riemann-Roch type inequalities","authors":"Xing Lu, Jian Xiao","doi":"10.1016/j.aim.2024.109982","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by Kollár-Matsusaka's Riemann-Roch type inequalities, applying effective very ampleness of adjoint bundles on Fujita conjecture and log-concavity given by Khovanskii-Teissier inequalities, we show that for any partition <em>λ</em> of the positive integer <em>d</em> there exists a universal bivariate polynomial <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> which has <span><math><mi>deg</mi><mo></mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>≤</mo><mi>d</mi></math></span> and whose coefficients depend only on <em>n</em> and <em>λ</em>, such that for any projective manifold <em>X</em> of dimension <em>n</em> and any ample line bundle <em>L</em> on <em>X</em>,<span><span><span><math><mrow><mo>|</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>⋅</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>d</mi></mrow></msup><mo>|</mo></mrow><mo>≤</mo><mfrac><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>⋅</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><msup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is the canonical bundle of <em>X</em> and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is the monomial Chern class given by the partition <em>λ</em>. As a special case, when <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> or <span><math><mo>−</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is ample, this implies that there exists a constant <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> depending only on <em>n</em> such that for any monomial Chern classes of top degree, the Chern number ratios satisfy the following inequality<span><span><span><math><mrow><mo>|</mo><mfrac><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup></mrow></mfrac><mo>|</mo></mrow><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo></math></span></span></span> which recovers a recent result of Du-Sun. The main result also yields an asymptotic version of the sharper Riemann-Roch type inequality. Furthermore, using similar method we also obtain inequalities for Chern classes of the logarithmic tangent bundle.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004985","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by Kollár-Matsusaka's Riemann-Roch type inequalities, applying effective very ampleness of adjoint bundles on Fujita conjecture and log-concavity given by Khovanskii-Teissier inequalities, we show that for any partition λ of the positive integer d there exists a universal bivariate polynomial which has and whose coefficients depend only on n and λ, such that for any projective manifold X of dimension n and any ample line bundle L on X, where is the canonical bundle of X and is the monomial Chern class given by the partition λ. As a special case, when or is ample, this implies that there exists a constant depending only on n such that for any monomial Chern classes of top degree, the Chern number ratios satisfy the following inequality which recovers a recent result of Du-Sun. The main result also yields an asymptotic version of the sharper Riemann-Roch type inequality. Furthermore, using similar method we also obtain inequalities for Chern classes of the logarithmic tangent bundle.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.