{"title":"The inequalities of Chern classes and Riemann-Roch type inequalities","authors":"Xing Lu, Jian Xiao","doi":"10.1016/j.aim.2024.109982","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by Kollár-Matsusaka's Riemann-Roch type inequalities, applying effective very ampleness of adjoint bundles on Fujita conjecture and log-concavity given by Khovanskii-Teissier inequalities, we show that for any partition <em>λ</em> of the positive integer <em>d</em> there exists a universal bivariate polynomial <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> which has <span><math><mi>deg</mi><mo></mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>≤</mo><mi>d</mi></math></span> and whose coefficients depend only on <em>n</em> and <em>λ</em>, such that for any projective manifold <em>X</em> of dimension <em>n</em> and any ample line bundle <em>L</em> on <em>X</em>,<span><span><span><math><mrow><mo>|</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>⋅</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>d</mi></mrow></msup><mo>|</mo></mrow><mo>≤</mo><mfrac><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>⋅</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><msup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is the canonical bundle of <em>X</em> and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is the monomial Chern class given by the partition <em>λ</em>. As a special case, when <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> or <span><math><mo>−</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is ample, this implies that there exists a constant <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> depending only on <em>n</em> such that for any monomial Chern classes of top degree, the Chern number ratios satisfy the following inequality<span><span><span><math><mrow><mo>|</mo><mfrac><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup></mrow></mfrac><mo>|</mo></mrow><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo></math></span></span></span> which recovers a recent result of Du-Sun. The main result also yields an asymptotic version of the sharper Riemann-Roch type inequality. Furthermore, using similar method we also obtain inequalities for Chern classes of the logarithmic tangent bundle.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109982"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004985","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by Kollár-Matsusaka's Riemann-Roch type inequalities, applying effective very ampleness of adjoint bundles on Fujita conjecture and log-concavity given by Khovanskii-Teissier inequalities, we show that for any partition λ of the positive integer d there exists a universal bivariate polynomial which has and whose coefficients depend only on n and λ, such that for any projective manifold X of dimension n and any ample line bundle L on X, where is the canonical bundle of X and is the monomial Chern class given by the partition λ. As a special case, when or is ample, this implies that there exists a constant depending only on n such that for any monomial Chern classes of top degree, the Chern number ratios satisfy the following inequality which recovers a recent result of Du-Sun. The main result also yields an asymptotic version of the sharper Riemann-Roch type inequality. Furthermore, using similar method we also obtain inequalities for Chern classes of the logarithmic tangent bundle.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.