The inequalities of Chern classes and Riemann-Roch type inequalities

IF 1.5 1区 数学 Q1 MATHEMATICS
Xing Lu, Jian Xiao
{"title":"The inequalities of Chern classes and Riemann-Roch type inequalities","authors":"Xing Lu,&nbsp;Jian Xiao","doi":"10.1016/j.aim.2024.109982","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by Kollár-Matsusaka's Riemann-Roch type inequalities, applying effective very ampleness of adjoint bundles on Fujita conjecture and log-concavity given by Khovanskii-Teissier inequalities, we show that for any partition <em>λ</em> of the positive integer <em>d</em> there exists a universal bivariate polynomial <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> which has <span><math><mi>deg</mi><mo>⁡</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>≤</mo><mi>d</mi></math></span> and whose coefficients depend only on <em>n</em> and <em>λ</em>, such that for any projective manifold <em>X</em> of dimension <em>n</em> and any ample line bundle <em>L</em> on <em>X</em>,<span><span><span><math><mrow><mo>|</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>⋅</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>d</mi></mrow></msup><mo>|</mo></mrow><mo>≤</mo><mfrac><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>⋅</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><msup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is the canonical bundle of <em>X</em> and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is the monomial Chern class given by the partition <em>λ</em>. As a special case, when <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> or <span><math><mo>−</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is ample, this implies that there exists a constant <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> depending only on <em>n</em> such that for any monomial Chern classes of top degree, the Chern number ratios satisfy the following inequality<span><span><span><math><mrow><mo>|</mo><mfrac><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup></mrow></mfrac><mo>|</mo></mrow><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo></math></span></span></span> which recovers a recent result of Du-Sun. The main result also yields an asymptotic version of the sharper Riemann-Roch type inequality. Furthermore, using similar method we also obtain inequalities for Chern classes of the logarithmic tangent bundle.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109982"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004985","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by Kollár-Matsusaka's Riemann-Roch type inequalities, applying effective very ampleness of adjoint bundles on Fujita conjecture and log-concavity given by Khovanskii-Teissier inequalities, we show that for any partition λ of the positive integer d there exists a universal bivariate polynomial Qλ(x,y) which has degQλd and whose coefficients depend only on n and λ, such that for any projective manifold X of dimension n and any ample line bundle L on X,|cλ(X)Lnd|Qλ(Ln,KXLn1)(Ln)d1, where KX is the canonical bundle of X and cλ(X) is the monomial Chern class given by the partition λ. As a special case, when KX or KX is ample, this implies that there exists a constant cn depending only on n such that for any monomial Chern classes of top degree, the Chern number ratios satisfy the following inequality|cλ(X)c1(X)n|cn, which recovers a recent result of Du-Sun. The main result also yields an asymptotic version of the sharper Riemann-Roch type inequality. Furthermore, using similar method we also obtain inequalities for Chern classes of the logarithmic tangent bundle.
车恩类不等式和黎曼-罗赫型不等式
受 Kollár-Matsusaka 的 Riemann-Roch 型不等式的启发,应用藤田猜想上的邻接束的有效放大性和 Khovanskii-Teissier 不等式给出的对数凹性,我们证明了对于正整数 d 的任意分区 λ,存在一个普遍的双变量多项式 Qλ(x. y),其系数仅依赖于 n 和 λ,从而对于任意投影流形 X 上的 X,|cλ(x. y),存在一个degQλ≤d 的普遍的双变量多项式 Qλ(x. y)、y)的系数只取决于 n 和 λ,因此对于维数为 n 的任何投影流形 X 和 X 上的任何充裕线束 L,|cλ(X)⋅Ln-d|≤Qλ(Ln,KX⋅Ln-1)(Ln)d-1,其中 KX 是 X 的典型束,cλ(X) 是分割 λ 给出的单项式切尔恩类。作为特例,当 KX 或 -KX 是充裕的时,这意味着存在一个仅取决于 n 的常数 cn,从而对于任何顶阶的单核切尔恩类,其切尔恩数比满足以下不等式|cλ(X)c1(X)n|≤cn,这恢复了杜逊的一个最新结果。主要结果还得到了更尖锐的黎曼-罗赫型不等式的渐进版本。此外,利用类似的方法,我们还得到了对数切线束的切恩类不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信