Asymptotic behavior of complete conformal metric near singular boundary

IF 1.5 1区 数学 Q1 MATHEMATICS
Weiming Shen, Yue Wang
{"title":"Asymptotic behavior of complete conformal metric near singular boundary","authors":"Weiming Shen,&nbsp;Yue Wang","doi":"10.1016/j.aim.2024.109977","DOIUrl":null,"url":null,"abstract":"<div><div>The boundary behavior of the singular Yamabe problem has been extensively studied near sufficiently smooth boundaries, while less is known about the asymptotic behavior of solutions near singular boundaries. In this paper, we study the asymptotic behaviors of solutions to the singular Yamabe problem with negative constant scalar curvature near singular boundaries and derive the optimal estimates for the background metric which is not necessarily conformally flat. In particular, we prove that the solutions are well approximated by the solutions in tangent cones at singular points on the boundaries.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109977"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004936","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The boundary behavior of the singular Yamabe problem has been extensively studied near sufficiently smooth boundaries, while less is known about the asymptotic behavior of solutions near singular boundaries. In this paper, we study the asymptotic behaviors of solutions to the singular Yamabe problem with negative constant scalar curvature near singular boundaries and derive the optimal estimates for the background metric which is not necessarily conformally flat. In particular, we prove that the solutions are well approximated by the solutions in tangent cones at singular points on the boundaries.
奇异边界附近完全保角度量的渐近行为
奇异山边问题的边界行为已在足够光滑的边界附近得到广泛研究,而对奇异边界附近解的渐近行为却知之甚少。本文研究了奇异边界附近具有负常标量曲率的奇异 Yamabe 问题解的渐近行为,并推导出不一定保角平坦的背景度量的最优估计。特别是,我们证明了边界上奇异点的解与切锥中的解近似得很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信