Jia Hao , Ruofan Deng , Liangyue Jia , Zuoxuan Li , Reza Alizadeh , Leili Soltanisehat , Bingyi Liu , Zhibin Sun , Yiping Shao
{"title":"Human-in-the-loop optimization for vehicle body lightweight design","authors":"Jia Hao , Ruofan Deng , Liangyue Jia , Zuoxuan Li , Reza Alizadeh , Leili Soltanisehat , Bingyi Liu , Zhibin Sun , Yiping Shao","doi":"10.1016/j.aei.2024.102887","DOIUrl":null,"url":null,"abstract":"<div><div>Automatic optimization algorithms are crucial for vehicle body lightweight design; however, existing methods remain inefficient leading to excessive iterations that increase both time and costs. Current interactive optimization strategies partially mitigate this issue but lack a broad range of manipulation points and auxiliary information models. As such, we introduce a novel approach, “Human-in-the-Loop based method for Vehicle Body Lightweight Design” (HIL-VBLD). This method integrates human decision-making with optimization algorithms to reduce unproductive iterations. HIL-VBLD comprises two key components: (1) an innovative interaction mode that provides multiple manipulation points including constraint modification, algorithm switching, and selection of solutions of interest (SOI); (2) A comprehensive auxiliary information model that supports decision-making for designers. Our analysis demonstrates HIL-VBLD’s efficacy, showing a 54.5 % reduction in iteration cycles for genetic algorithm using SOI selection. Algorithm switching led to a 4.5 % mass reduction, mitigating local optimum pitfalls associated with gradient algorithms. Additionally, the auxiliary information model achieved a further 1.25 % mass reduction, enhancing optimization robustness. Compared to conventional automatic algorithm switching strategies, HIL-VBLD maintains equivalent accuracy with 23.9 % fewer iterations.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102887"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624005354","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Automatic optimization algorithms are crucial for vehicle body lightweight design; however, existing methods remain inefficient leading to excessive iterations that increase both time and costs. Current interactive optimization strategies partially mitigate this issue but lack a broad range of manipulation points and auxiliary information models. As such, we introduce a novel approach, “Human-in-the-Loop based method for Vehicle Body Lightweight Design” (HIL-VBLD). This method integrates human decision-making with optimization algorithms to reduce unproductive iterations. HIL-VBLD comprises two key components: (1) an innovative interaction mode that provides multiple manipulation points including constraint modification, algorithm switching, and selection of solutions of interest (SOI); (2) A comprehensive auxiliary information model that supports decision-making for designers. Our analysis demonstrates HIL-VBLD’s efficacy, showing a 54.5 % reduction in iteration cycles for genetic algorithm using SOI selection. Algorithm switching led to a 4.5 % mass reduction, mitigating local optimum pitfalls associated with gradient algorithms. Additionally, the auxiliary information model achieved a further 1.25 % mass reduction, enhancing optimization robustness. Compared to conventional automatic algorithm switching strategies, HIL-VBLD maintains equivalent accuracy with 23.9 % fewer iterations.
期刊介绍:
Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.