Stochastic representation for solutions of a system of coupled HJB-Isaacs equations with integral–differential operators

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Sheng Luo , Wenqiang Li , Xun Li , Qingmeng Wei
{"title":"Stochastic representation for solutions of a system of coupled HJB-Isaacs equations with integral–differential operators","authors":"Sheng Luo ,&nbsp;Wenqiang Li ,&nbsp;Xun Li ,&nbsp;Qingmeng Wei","doi":"10.1016/j.spa.2024.104502","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we focus on the stochastic representation of a system of coupled Hamilton–Jacobi–Bellman–Isaacs (HJB–Isaacs (HJBI), for short) equations which is in fact a system of coupled Isaacs’ type integral-partial differential equation. For this, we introduce an associated zero-sum stochastic differential game, where the state process is described by a classical stochastic differential equation (SDE, for short) with jumps, and the cost functional of recursive type is defined by a new type of backward stochastic differential equation (BSDE, for short) with two Poisson random measures, whose wellposedness and a prior estimate as well as the comparison theorem are investigated for the first time. One of the Poisson random measures <span><math><mi>μ</mi></math></span> appearing in the SDE and the BSDE stems from the integral term of the HJBI equations; the other random measure in BSDE is introduced to link the coupling factor of the HJBI equations. We show through an extension of the dynamic programming principle that the lower value function of this game problem is the viscosity solution of the system of our coupled HJBI equations. The uniqueness of the viscosity solution is also obtained in a space of continuous functions satisfying certain growth condition. In addition, also the upper value function of the game is shown to be the solution of the associated system of coupled Isaacs’ type of integral-partial differential equations. As a byproduct, we obtain the existence of the value for the game problem under the well-known Isaacs’ condition.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104502"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002102","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we focus on the stochastic representation of a system of coupled Hamilton–Jacobi–Bellman–Isaacs (HJB–Isaacs (HJBI), for short) equations which is in fact a system of coupled Isaacs’ type integral-partial differential equation. For this, we introduce an associated zero-sum stochastic differential game, where the state process is described by a classical stochastic differential equation (SDE, for short) with jumps, and the cost functional of recursive type is defined by a new type of backward stochastic differential equation (BSDE, for short) with two Poisson random measures, whose wellposedness and a prior estimate as well as the comparison theorem are investigated for the first time. One of the Poisson random measures μ appearing in the SDE and the BSDE stems from the integral term of the HJBI equations; the other random measure in BSDE is introduced to link the coupling factor of the HJBI equations. We show through an extension of the dynamic programming principle that the lower value function of this game problem is the viscosity solution of the system of our coupled HJBI equations. The uniqueness of the viscosity solution is also obtained in a space of continuous functions satisfying certain growth condition. In addition, also the upper value function of the game is shown to be the solution of the associated system of coupled Isaacs’ type of integral-partial differential equations. As a byproduct, we obtain the existence of the value for the game problem under the well-known Isaacs’ condition.
带积分微分算子的 HJB-Isaacs 耦合方程组解的随机表示法
在本文中,我们将重点研究耦合汉密尔顿-雅各比-贝尔曼-艾萨克斯(简称 HJB-艾萨克斯(HJBI))方程组的随机表示,该方程组实际上是一个耦合艾萨克斯型积分-部分微分方程组。为此,我们引入了一个相关的零和随机微分博弈,其中状态过程由一个带跳跃的经典随机微分方程(简称 SDE)描述,递归类型的代价函数由一个带有两个泊松随机度量的新型后向随机微分方程(简称 BSDE)定义。在 SDE 和 BSDE 中出现的泊松随机量之一 μ 源自 HJBI 方程的积分项;BSDE 中的另一个随机量是为了连接 HJBI 方程的耦合因子而引入的。我们通过对动态编程原理的扩展证明,该博弈问题的低值函数就是我们的耦合 HJBI 方程系统的粘性解。在满足一定增长条件的连续函数空间中,我们还得到了粘性解的唯一性。此外,还证明了博弈的上值函数是相关的耦合艾萨克式积分偏微分方程系的解。作为副产品,我们在著名的艾萨克斯条件下得到了博弈问题的存在值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信