Impact of doping and hydrostatic pressure on structural, electronic, optical, and mechanical properties of novel double halide perovskite Cs2LiGaBr6

Dholon Kumar Paul, Wajiha Tarannum Chaudhry, S M Naimul Mamun, M.L. Rahman, A F M Yusuf Haider, Firoze H. Haque
{"title":"Impact of doping and hydrostatic pressure on structural, electronic, optical, and mechanical properties of novel double halide perovskite Cs2LiGaBr6","authors":"Dholon Kumar Paul,&nbsp;Wajiha Tarannum Chaudhry,&nbsp;S M Naimul Mamun,&nbsp;M.L. Rahman,&nbsp;A F M Yusuf Haider,&nbsp;Firoze H. Haque","doi":"10.1016/j.chphma.2024.06.006","DOIUrl":null,"url":null,"abstract":"<div><div>The emergence of lead-free halide double perovskites exhibiting bandgaps within the visible spectrum represents a substantial advancement in engineering environmentally benign perovskite solar cells. In this work, we investigated the structural, optical, electronic, and mechanical properties of Cs-based lead-free Cs<sub>2</sub>LiGaBr<sub>6</sub> double halide perovskites with Mn and Cr doping under hydrostatic pressure ranging from 2 to 80 GPa using density functional theory (DFT). The introduction of dopants consistently alters the lattice parameters because of the mismatch in atomic radii, whereas increasing the pressure leads to a reduction in these constants. All the studied Cs<sub>2</sub>LiGaBr<sub>6</sub> compounds exhibited direct band gaps, which increased slightly with doping. This is attributed to the modulation of electronic states by dopant-related defect levels. The bandgap variation under pressure is primarily attributed to changes in the quantum confinement effects induced by compressive strain. Analysis of the density of states and optical properties revealed enhanced absorption in the visible spectrum for the doped compositions, and in the UV spectrum under pressure. The study of mechanical stability confirms the ductile nature of both the doped and pristine compounds under pressure, underscoring their suitability for thin film production. This study contributes to the understanding of sustainable alternatives for perovskite optoelectronic applications, emphasizing Cs<sub>2</sub>LiGaBr<sub>6</sub>'s potential under diverse conditions and dopant influences.</div></div>","PeriodicalId":100236,"journal":{"name":"ChemPhysMater","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhysMater","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772571524000299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of lead-free halide double perovskites exhibiting bandgaps within the visible spectrum represents a substantial advancement in engineering environmentally benign perovskite solar cells. In this work, we investigated the structural, optical, electronic, and mechanical properties of Cs-based lead-free Cs2LiGaBr6 double halide perovskites with Mn and Cr doping under hydrostatic pressure ranging from 2 to 80 GPa using density functional theory (DFT). The introduction of dopants consistently alters the lattice parameters because of the mismatch in atomic radii, whereas increasing the pressure leads to a reduction in these constants. All the studied Cs2LiGaBr6 compounds exhibited direct band gaps, which increased slightly with doping. This is attributed to the modulation of electronic states by dopant-related defect levels. The bandgap variation under pressure is primarily attributed to changes in the quantum confinement effects induced by compressive strain. Analysis of the density of states and optical properties revealed enhanced absorption in the visible spectrum for the doped compositions, and in the UV spectrum under pressure. The study of mechanical stability confirms the ductile nature of both the doped and pristine compounds under pressure, underscoring their suitability for thin film production. This study contributes to the understanding of sustainable alternatives for perovskite optoelectronic applications, emphasizing Cs2LiGaBr6's potential under diverse conditions and dopant influences.

Abstract Image

掺杂和静水压力对新型双卤化物包晶 Cs2LiGaBr6 的结构、电子、光学和机械特性的影响
无铅卤化物双包晶石在可见光谱范围内显示出带隙,它的出现标志着在设计无害环境的包晶石太阳能电池方面取得了重大进展。在这项工作中,我们利用密度泛函理论(DFT)研究了在 2 到 80 GPa 的静水压力下,掺杂了锰和铬的 Cs 基无铅 Cs2LiGaBr6 双卤化物包晶的结构、光学、电子和机械特性。由于原子半径的不匹配,掺杂剂的引入会持续改变晶格参数,而压力的增加会导致这些常数的降低。所有研究的 Cs2LiGaBr6 化合物都显示出直接带隙,并随着掺杂量的增加而略有增加。这归因于掺杂剂相关缺陷水平对电子状态的调节。带隙在压力下的变化主要归因于压缩应变引起的量子约束效应的变化。对状态密度和光学特性的分析表明,掺杂成分在可见光谱中的吸收增强,在压力作用下在紫外光谱中的吸收也增强。对机械稳定性的研究证实了掺杂化合物和原始化合物在压力下的延展性,突出了它们在薄膜生产中的适用性。这项研究有助于了解包晶体光电应用的可持续替代品,强调了 Cs2LiGaBr6 在不同条件和掺杂剂影响下的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信