{"title":"Shuffle algebras, lattice paths and Macdonald functions","authors":"Alexandr Garbali, Ajeeth Gunna","doi":"10.1016/j.aim.2024.109974","DOIUrl":null,"url":null,"abstract":"<div><div>We consider partition functions on the <span><math><mi>N</mi><mo>×</mo><mi>N</mi></math></span> square lattice with the local Boltzmann weights given by the <em>R</em>-matrix of the <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><msub><mrow><mover><mrow><mi>s</mi><mi>l</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn><mo>|</mo><mi>m</mi></mrow></msub><mo>)</mo></math></span> quantum algebra. We identify boundary states such that the square lattice can be viewed on a conic surface. The partition function <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> on this lattice computes the weighted sum over all possible closed coloured lattice paths with <span><math><mi>n</mi><mo>+</mo><mi>m</mi></math></span> different colours: <em>n</em> “bosonic” colours and <em>m</em> “fermionic” colours. Each bosonic (fermionic) path of colour <em>i</em> contributes a factor of <span><math><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> (<span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>) to the weight of the configuration. We show the following:<ul><li><span>i)</span><span><div><span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> is a symmetric function in the spectral parameters <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>…</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> and generates basis elements of the commutative trigonometric Feigin–Odesskii shuffle algebra. The generating function of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> admits a shuffle-exponential formula analogous to the Macdonald Cauchy kernel.</div></span></li><li><span>ii)</span><span><div><span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> is a symmetric function in two alphabets <span><math><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>…</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>…</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span>. When <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>…</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> are set to be equal to the box content of a skew Young diagram <span><math><mi>μ</mi><mo>/</mo><mi>ν</mi></math></span> with <em>N</em> boxes the partition function <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> reproduces the skew Macdonald function <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>μ</mi><mo>/</mo><mi>ν</mi></mrow></msub><mrow><mo>[</mo><mi>w</mi><mo>−</mo><mi>z</mi><mo>]</mo></mrow></math></span>.</div></span></li></ul></div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109974"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004894","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider partition functions on the square lattice with the local Boltzmann weights given by the R-matrix of the quantum algebra. We identify boundary states such that the square lattice can be viewed on a conic surface. The partition function on this lattice computes the weighted sum over all possible closed coloured lattice paths with different colours: n “bosonic” colours and m “fermionic” colours. Each bosonic (fermionic) path of colour i contributes a factor of () to the weight of the configuration. We show the following:
i)
is a symmetric function in the spectral parameters and generates basis elements of the commutative trigonometric Feigin–Odesskii shuffle algebra. The generating function of admits a shuffle-exponential formula analogous to the Macdonald Cauchy kernel.
ii)
is a symmetric function in two alphabets and . When are set to be equal to the box content of a skew Young diagram with N boxes the partition function reproduces the skew Macdonald function .
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.