Chemometrics and electrochemistry joined hands to develop a novel and intelligent electronic device for simultaneous determination of malathion and diazinon in fruit juices: A progress in multidisciplinary studies
Leila Zare , Ehsan Sadeghi , Meghdad Pirsaheb , Maziar Farshadnia , Ali R. Jalalvand
{"title":"Chemometrics and electrochemistry joined hands to develop a novel and intelligent electronic device for simultaneous determination of malathion and diazinon in fruit juices: A progress in multidisciplinary studies","authors":"Leila Zare , Ehsan Sadeghi , Meghdad Pirsaheb , Maziar Farshadnia , Ali R. Jalalvand","doi":"10.1016/j.chemolab.2024.105249","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, chemometrics and electrochemistry connected to each other to open a new way for assisting food industry specialists based on developing a novel electrochemical sensor for simultaneous determination of malathion (MT) and diazinon (DZ) in the presence of patulin (PT) and citrinin (CT) as uncalibrated interference in fruit juices. The sensor was fabricated based on modification of a glassy carbon electrode (GCE) by chitosan-ionic liquid (Ch-IL), electrodeposition of gold nanoparticles (Au NPs), drop-casting of multiwalled carbon nanotubes-IL (MWCNTs-IL), and electrochemical synthesis of dual templates molecularly imprinted polymers (DTMIPs) in which MT and DZ were used as templates. Effects of experimental variables on structure and response of the sensor were screened and optimized by Min Run screening and central composite design, respectively. After optimization, the third-order hydrodynamic differential pulse voltammetric (HDPV) data were generated based on changing modulation times and modulation amplitudes as instrumental parameters and modeled by N-PLS/RTL, U-PLS/RTL, U-PCA/RTL, APARAFAC, PARAFAC2 and MCR-ALS to select the best one to assist the sensor for ultra selective simultaneous determination of MT and DZ in the presence of PT and CT as uncalibrated interference in fruit samples. The results confirmed the MCR-ALS was the best assistance for DTMIPs/MWCNTs-IL/Au NPs/Ch-IL/GCE for simultaneous determination of MT and DZ in the presence of PT and CT as uncalibrated interference in both synthetic and real samples. Performance of the sensor assisted by MCR-ALS for ultra selective simultaneous determination of MT (0.1 pM–12.5 pM, LOD = 0.01 pM) and DZ (0.25 pM–8.5 pM, LOD = 0.15 pM) was really admirable which was comparable with HPLC with UV detection while it was faster, simpler and low-cost in comparison to HPLC-UV which motivated us to introduce it as a reliable method to assist food industry specialists for quality assurance purposes.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"255 ","pages":"Article 105249"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001898","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, chemometrics and electrochemistry connected to each other to open a new way for assisting food industry specialists based on developing a novel electrochemical sensor for simultaneous determination of malathion (MT) and diazinon (DZ) in the presence of patulin (PT) and citrinin (CT) as uncalibrated interference in fruit juices. The sensor was fabricated based on modification of a glassy carbon electrode (GCE) by chitosan-ionic liquid (Ch-IL), electrodeposition of gold nanoparticles (Au NPs), drop-casting of multiwalled carbon nanotubes-IL (MWCNTs-IL), and electrochemical synthesis of dual templates molecularly imprinted polymers (DTMIPs) in which MT and DZ were used as templates. Effects of experimental variables on structure and response of the sensor were screened and optimized by Min Run screening and central composite design, respectively. After optimization, the third-order hydrodynamic differential pulse voltammetric (HDPV) data were generated based on changing modulation times and modulation amplitudes as instrumental parameters and modeled by N-PLS/RTL, U-PLS/RTL, U-PCA/RTL, APARAFAC, PARAFAC2 and MCR-ALS to select the best one to assist the sensor for ultra selective simultaneous determination of MT and DZ in the presence of PT and CT as uncalibrated interference in fruit samples. The results confirmed the MCR-ALS was the best assistance for DTMIPs/MWCNTs-IL/Au NPs/Ch-IL/GCE for simultaneous determination of MT and DZ in the presence of PT and CT as uncalibrated interference in both synthetic and real samples. Performance of the sensor assisted by MCR-ALS for ultra selective simultaneous determination of MT (0.1 pM–12.5 pM, LOD = 0.01 pM) and DZ (0.25 pM–8.5 pM, LOD = 0.15 pM) was really admirable which was comparable with HPLC with UV detection while it was faster, simpler and low-cost in comparison to HPLC-UV which motivated us to introduce it as a reliable method to assist food industry specialists for quality assurance purposes.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.