Interacting multiple model adaptive robust Kalman filter for process and measurement modeling errors simultaneously

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Baojian Yang, Huaiguang Wang, Zhiyong Shi
{"title":"Interacting multiple model adaptive robust Kalman filter for process and measurement modeling errors simultaneously","authors":"Baojian Yang,&nbsp;Huaiguang Wang,&nbsp;Zhiyong Shi","doi":"10.1016/j.sigpro.2024.109743","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes an effective Interactive Multiple Model Adaptive Robust Kalman Filter (IMMARKF) without time delay to handle situations where both process modeling errors and measurement modeling errors exist simultaneously. Building upon the robust Centered Error Entropy Kalman Filter (CEEKF) for outlier measurements and the Adaptive Kalman Filter (AKF) for process modeling errors, the IMMARKF method combines the Gaussian optimality of the KF, the adaptability of AKF, and the robustness of CEEKF using the interacting multiple model (IMM) principle to adapt reasonably to changing application environments, and can obtain estimation results in the absence of time delay. Target tracking simulations show that compared to existing methods, the proposed method can better adapt to non-stationary noise and application environments where process anomalies and measurement anomalies occur simultaneously.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109743"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003633","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an effective Interactive Multiple Model Adaptive Robust Kalman Filter (IMMARKF) without time delay to handle situations where both process modeling errors and measurement modeling errors exist simultaneously. Building upon the robust Centered Error Entropy Kalman Filter (CEEKF) for outlier measurements and the Adaptive Kalman Filter (AKF) for process modeling errors, the IMMARKF method combines the Gaussian optimality of the KF, the adaptability of AKF, and the robustness of CEEKF using the interacting multiple model (IMM) principle to adapt reasonably to changing application environments, and can obtain estimation results in the absence of time delay. Target tracking simulations show that compared to existing methods, the proposed method can better adapt to non-stationary noise and application environments where process anomalies and measurement anomalies occur simultaneously.
同时处理过程和测量建模误差的交互式多模型自适应鲁棒卡尔曼滤波器
本文提出了一种无时间延迟的有效交互式多模型自适应鲁棒卡尔曼滤波器(IMMARKF),用于处理同时存在过程建模误差和测量建模误差的情况。IMMARKF 方法以针对离群测量的鲁棒中心误差熵卡尔曼滤波器(CEEKF)和针对过程建模误差的自适应卡尔曼滤波器(AKF)为基础,结合了卡尔曼滤波器的高斯最优性、自适应卡尔曼滤波器的适应性和 CEEKF 的鲁棒性,利用交互式多模型(IMM)原理合理地适应不断变化的应用环境,并能在无时延的情况下获得估计结果。目标跟踪仿真表明,与现有方法相比,所提出的方法能更好地适应非稳态噪声和过程异常与测量异常同时发生的应用环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信