{"title":"PMformer: A novel informer-based model for accurate long-term time series prediction","authors":"Yuewei Xue, Shaopeng Guan, Wanhai Jia","doi":"10.1016/j.ins.2024.121586","DOIUrl":null,"url":null,"abstract":"<div><div>When applied to long-term time series forecasting, Informer struggles to capture temporal dependencies effectively, leading to suboptimal forecasting accuracy. To address this issue, we propose PMformer, a novel model based on Informer for long-term time series prediction. First, we introduce a probabilistic patch sampling attention mechanism that utilizes a patch-based strategy to compute attention scores within randomly selected sequence patches. This localized approach enhances the model's capability to capture local temporal dependencies, allowing it to better understand and process critical local features in time series while reducing computational complexity. Additionally, we propose a multi-scale scaling sparse attention technique that balances attention distribution by combining coarse- and fine-grained attention scores, thereby improving the model's ability to capture global sequence information. Finally, we design a dilated causal pooling layer and a multilayer perceptual cross self-attention decoder to further enhance the model's prediction accuracy by capturing key information in long-term correlations and precisely focusing on sequences. We conducted experiments on both multivariate and univariate time series forecasting tasks. The results show that PMformer outperforms six baseline models, including PatchTST and FEDformer, in terms of MAE and MSE metrics. This demonstrates its superior ability to capture temporal dependencies, achieving more accurate predictions.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"690 ","pages":"Article 121586"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524015007","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
When applied to long-term time series forecasting, Informer struggles to capture temporal dependencies effectively, leading to suboptimal forecasting accuracy. To address this issue, we propose PMformer, a novel model based on Informer for long-term time series prediction. First, we introduce a probabilistic patch sampling attention mechanism that utilizes a patch-based strategy to compute attention scores within randomly selected sequence patches. This localized approach enhances the model's capability to capture local temporal dependencies, allowing it to better understand and process critical local features in time series while reducing computational complexity. Additionally, we propose a multi-scale scaling sparse attention technique that balances attention distribution by combining coarse- and fine-grained attention scores, thereby improving the model's ability to capture global sequence information. Finally, we design a dilated causal pooling layer and a multilayer perceptual cross self-attention decoder to further enhance the model's prediction accuracy by capturing key information in long-term correlations and precisely focusing on sequences. We conducted experiments on both multivariate and univariate time series forecasting tasks. The results show that PMformer outperforms six baseline models, including PatchTST and FEDformer, in terms of MAE and MSE metrics. This demonstrates its superior ability to capture temporal dependencies, achieving more accurate predictions.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.