GKF-PUAL: A group kernel-free approach to positive-unlabeled learning with variable selection

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiaoke Wang , Rui Zhu , Jing-Hao Xue
{"title":"GKF-PUAL: A group kernel-free approach to positive-unlabeled learning with variable selection","authors":"Xiaoke Wang ,&nbsp;Rui Zhu ,&nbsp;Jing-Hao Xue","doi":"10.1016/j.ins.2024.121574","DOIUrl":null,"url":null,"abstract":"<div><div>Variable selection is important for classification of data with many irrelevant predicting variables, but it has not yet been well studied in positive-unlabeled (PU) learning, where classifiers have to be trained without labelled-negative instances. In this paper, we propose a group kernel-free PU classifier with asymmetric loss (GKF-PUAL) to achieve quadratic PU classification with group-lasso regularisation embedded for variable selection. We also propose a five-block algorithm to solve the optimization problem of GKF-PUAL. Our experimental results reveal the superiority of GKF-PUAL in both PU classification and variable selection, improving the baseline PUAL by more than 10% in F1-score across four benchmark datasets and removing over 70% of irrelevant variables on six benchmark datasets. The code for GKF-PUAL is at <span><span>https://github.com/tkks22123/GKF-PUAL</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"690 ","pages":"Article 121574"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524014889","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Variable selection is important for classification of data with many irrelevant predicting variables, but it has not yet been well studied in positive-unlabeled (PU) learning, where classifiers have to be trained without labelled-negative instances. In this paper, we propose a group kernel-free PU classifier with asymmetric loss (GKF-PUAL) to achieve quadratic PU classification with group-lasso regularisation embedded for variable selection. We also propose a five-block algorithm to solve the optimization problem of GKF-PUAL. Our experimental results reveal the superiority of GKF-PUAL in both PU classification and variable selection, improving the baseline PUAL by more than 10% in F1-score across four benchmark datasets and removing over 70% of irrelevant variables on six benchmark datasets. The code for GKF-PUAL is at https://github.com/tkks22123/GKF-PUAL.
GKF-PUAL:带变量选择的无组核正向无标记学习方法
变量选择对于具有许多不相关预测变量的数据分类非常重要,但在正向无标记(PU)学习中还没有得到很好的研究,在这种学习中,分类器必须在没有标记负实例的情况下进行训练。在本文中,我们提出了一种具有非对称损失的无组核 PU 分类器(GKF-PUAL),通过嵌入用于变量选择的组-拉索正则化来实现二次 PU 分类。我们还提出了一种五块算法来解决 GKF-PUAL 的优化问题。我们的实验结果表明,GKF-PUAL 在 PU 分类和变量选择方面都具有优越性,在四个基准数据集上的 F1 分数比基准 PUAL 提高了 10%以上,并在六个基准数据集上去除了 70% 以上的无关变量。GKF-PUAL 的代码见 https://github.com/tkks22123/GKF-PUAL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信