Jianghui Cai , Bujia Chen , Jie Wen , Zhihua Cui , Jinjun Chen , Wensheng Zhang
{"title":"A joint vehicular device scheduling and uncertain resource management scheme for Federated Learning in Internet of Vehicles","authors":"Jianghui Cai , Bujia Chen , Jie Wen , Zhihua Cui , Jinjun Chen , Wensheng Zhang","doi":"10.1016/j.ins.2024.121552","DOIUrl":null,"url":null,"abstract":"<div><div>Federated learning (FL) offers an effective framework for the efficient process in vehicular edge computing. However, FL encompasses the process of distributing and uploading model parameters, which are inevitably transmitted in a wireless network environment. Some challenges in FL-assisted Internet of Vehicles (IoV) sceneries gradually emerging, such as data heterogeneity, concerned device resources, and unstable communication environment, which necessitate intelligent vehicle selection schemes that accelerate training efficiency. Based on these, we consider a new scenario, specifically an FL-assisted IoV system under uncertain communication conditions, and develop an interval many-objective vehicle selection and bandwidth allocation (IMoVSBA) joint optimization scheme. This scheme takes into account computation latency, energy consumption, server utilization, and data quality, while meeting multi-criteria resource optimization requirements. Among these, server utilization is a new objective designed specifically for this joint optimization problem. For the proposed problem, a novel interval many-objective evolutionary algorithm with individual comprehensive indicator to control the evolution direction (IMaOEACI) is designed. Simulation results demonstrate that this method outperforms other schemes in terms of accuracy, training cost, and server utilization, effectively improving training efficiency in wireless channel environments and reasonably utilizing bandwidth resources. It provides significant scientific value and application potential in the field of the IoVs.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"690 ","pages":"Article 121552"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002002552401466X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Federated learning (FL) offers an effective framework for the efficient process in vehicular edge computing. However, FL encompasses the process of distributing and uploading model parameters, which are inevitably transmitted in a wireless network environment. Some challenges in FL-assisted Internet of Vehicles (IoV) sceneries gradually emerging, such as data heterogeneity, concerned device resources, and unstable communication environment, which necessitate intelligent vehicle selection schemes that accelerate training efficiency. Based on these, we consider a new scenario, specifically an FL-assisted IoV system under uncertain communication conditions, and develop an interval many-objective vehicle selection and bandwidth allocation (IMoVSBA) joint optimization scheme. This scheme takes into account computation latency, energy consumption, server utilization, and data quality, while meeting multi-criteria resource optimization requirements. Among these, server utilization is a new objective designed specifically for this joint optimization problem. For the proposed problem, a novel interval many-objective evolutionary algorithm with individual comprehensive indicator to control the evolution direction (IMaOEACI) is designed. Simulation results demonstrate that this method outperforms other schemes in terms of accuracy, training cost, and server utilization, effectively improving training efficiency in wireless channel environments and reasonably utilizing bandwidth resources. It provides significant scientific value and application potential in the field of the IoVs.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.