Use of deperturbed and generalized second-order vibrational perturbation theories to study vibrational spectra intensity and the role of cubic force constant and total anharmonic matrix contributions to anharmonicity: α-thujone and S-camphor
{"title":"Use of deperturbed and generalized second-order vibrational perturbation theories to study vibrational spectra intensity and the role of cubic force constant and total anharmonic matrix contributions to anharmonicity: α-thujone and S-camphor","authors":"Kamal Ziadi","doi":"10.1016/j.cplett.2024.141690","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, we employ deperturbed second-order vibrational perturbation theory (DVPT2) and generalized VPT2 (GVPT2) methodologies to predict and analyze two distinct spectral regions in the infrared, VCD, and Raman spectra of α-thujone and S-camphor. The first spectral region spans from 3200 to 2900 cm<sup>−1</sup>, while the second region extends from 1800 to 500 cm<sup>−1</sup>. We aim to introduce and validate a program for the simultaneous analysis of vibrational spectra intensity in medium-sized molecules using GVPT2 and DVPT2. Furthermore, employing a graphical presentation (heat map) to illustrate the important contribution of cubic force constant and χ-matrix to anharmonicity.</div></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":"857 ","pages":"Article 141690"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009261424006328","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we employ deperturbed second-order vibrational perturbation theory (DVPT2) and generalized VPT2 (GVPT2) methodologies to predict and analyze two distinct spectral regions in the infrared, VCD, and Raman spectra of α-thujone and S-camphor. The first spectral region spans from 3200 to 2900 cm−1, while the second region extends from 1800 to 500 cm−1. We aim to introduce and validate a program for the simultaneous analysis of vibrational spectra intensity in medium-sized molecules using GVPT2 and DVPT2. Furthermore, employing a graphical presentation (heat map) to illustrate the important contribution of cubic force constant and χ-matrix to anharmonicity.
期刊介绍:
Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage.
Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.