Some bivariate options pricing in a regime-switching stochastic volatility jump-diffusion model with stochastic intensity, stochastic interest and dependent jump

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Libin Wang , Lixia Liu
{"title":"Some bivariate options pricing in a regime-switching stochastic volatility jump-diffusion model with stochastic intensity, stochastic interest and dependent jump","authors":"Libin Wang ,&nbsp;Lixia Liu","doi":"10.1016/j.matcom.2024.10.011","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the performance of bivariate options in the hypothesis of association between two underlying assets. Instead of the classical jump-diffusion process, the volatility of assets and the intensity of Poisson co-jump are both subject to the regime-switching square root process in this price dynamics. The endogenous and exogenous interest rate processes are introduced to examine the effect of interest rate on bivariate options pricing, respectively. An analytic pricing expression of bivariate options are deduced by joint discounted conditional characteristic function. Furthermore, the Fourier cosine expansion method is applied to obtain the approximated solutions of bivariate options price. Simulation and numerical examples are realized to examine the effect of the proposed model, the Fourier cosine expansion method, and the sensitivity of key arguments. The results indicate that embedding stochastic intensity, dependent structure of co-jump, and Markov regime-switching into the pricing dynamics have a significant influence on option pricing, and options prices are robust with respect to the choice of interest rate process.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424004026","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the performance of bivariate options in the hypothesis of association between two underlying assets. Instead of the classical jump-diffusion process, the volatility of assets and the intensity of Poisson co-jump are both subject to the regime-switching square root process in this price dynamics. The endogenous and exogenous interest rate processes are introduced to examine the effect of interest rate on bivariate options pricing, respectively. An analytic pricing expression of bivariate options are deduced by joint discounted conditional characteristic function. Furthermore, the Fourier cosine expansion method is applied to obtain the approximated solutions of bivariate options price. Simulation and numerical examples are realized to examine the effect of the proposed model, the Fourier cosine expansion method, and the sensitivity of key arguments. The results indicate that embedding stochastic intensity, dependent structure of co-jump, and Markov regime-switching into the pricing dynamics have a significant influence on option pricing, and options prices are robust with respect to the choice of interest rate process.
具有随机强度、随机利息和依赖性跳跃的制度切换随机波动跳跃扩散模型中的一些二元期权定价
本文研究了双变量期权在两个标的资产相关性假设中的表现。在这种价格动态中,资产的波动率和泊松共跳强度都受制于制度切换平方根过程,而不是经典的跳跃-扩散过程。本文引入了内生利率过程和外生利率过程,分别考察利率对二元期权定价的影响。通过联合贴现条件特征函数推导出了双变量期权的解析定价表达式。此外,还应用傅立叶余弦展开法得到了二元期权价格的近似解。通过仿真和数值实例检验了所提出的模型、傅立叶余弦展开方法的效果以及关键参数的敏感性。结果表明,在定价动力学中嵌入随机强度、共跳的依赖结构和马尔可夫制度切换对期权定价有重要影响,且期权价格对利率过程的选择是稳健的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信