Gilles Brocard , Jean-Philippe Goiran , Alessandro Conforti , Frank Preusser , Quentin Vitale , Guillaume Jouve , Lionel Darras , Christophe Benech , Cécile Vittori , Christine Oberlin , Edwige Pons-Branchu , Laurent Mattio , Arthur de Grauuw , Marco Leporati-Persiano , Andrea U. De Giorgi , Adele Bertini
{"title":"Double tombolo formation by regressive barrier widening and landside submergence: The case of Orbetello, Italy","authors":"Gilles Brocard , Jean-Philippe Goiran , Alessandro Conforti , Frank Preusser , Quentin Vitale , Guillaume Jouve , Lionel Darras , Christophe Benech , Cécile Vittori , Christine Oberlin , Edwige Pons-Branchu , Laurent Mattio , Arthur de Grauuw , Marco Leporati-Persiano , Andrea U. De Giorgi , Adele Bertini","doi":"10.1016/j.margeo.2024.107415","DOIUrl":null,"url":null,"abstract":"<div><div>The double tombolo of Orbetello, in Italy, has formed during the Holocene around an ancient central tombolo. Earlier models consider that its sand barriers formed as sand spits that stretched from the mainland to a coastal island before enlarging seawards. This evolution, however, remains speculative. In order to test these models, we conducted the first study of a double tombolo that combines coring of its sand barriers and comprehensive imaging of its internal structure using sub-bottom acoustic surveys offshore and in the back-barrier. Sediment ages were constrained by <sup>14</sup>C, luminescence, and U/Th dating. Acoustic images below the lagoon show that the barriers are in fact broad regressive strandplains that initiated on the flanks of the preexisting central isthmus when sea level was −7 ± 1 m lower than today. The strandplains then rose upwards and outwards, tracking sea level rise over the past 7 kyr. The oldest and lowest parts of the strandplains were flooded into the shallow intervening lagoon. The central isthmus is composed of regressive sand barriers accreted around a MIS 5.5 core during subsequent stages MIS 5.3 and MIS 5.1. The emplacement of the isthmus interrupted longshore drift between the mainland and the coastal island, converting the flanks of the initial tombolo into terminal sinks in which sand accretion accelerated, spurring early and rapid regression during the Holocene. A review of the environmental parameters conducive to double tombolo formation suggests that double tombolos may represent a frequent, albeit short-lived stage during the enlargement of single tombolos.</div></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"477 ","pages":"Article 107415"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025322724001993","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The double tombolo of Orbetello, in Italy, has formed during the Holocene around an ancient central tombolo. Earlier models consider that its sand barriers formed as sand spits that stretched from the mainland to a coastal island before enlarging seawards. This evolution, however, remains speculative. In order to test these models, we conducted the first study of a double tombolo that combines coring of its sand barriers and comprehensive imaging of its internal structure using sub-bottom acoustic surveys offshore and in the back-barrier. Sediment ages were constrained by 14C, luminescence, and U/Th dating. Acoustic images below the lagoon show that the barriers are in fact broad regressive strandplains that initiated on the flanks of the preexisting central isthmus when sea level was −7 ± 1 m lower than today. The strandplains then rose upwards and outwards, tracking sea level rise over the past 7 kyr. The oldest and lowest parts of the strandplains were flooded into the shallow intervening lagoon. The central isthmus is composed of regressive sand barriers accreted around a MIS 5.5 core during subsequent stages MIS 5.3 and MIS 5.1. The emplacement of the isthmus interrupted longshore drift between the mainland and the coastal island, converting the flanks of the initial tombolo into terminal sinks in which sand accretion accelerated, spurring early and rapid regression during the Holocene. A review of the environmental parameters conducive to double tombolo formation suggests that double tombolos may represent a frequent, albeit short-lived stage during the enlargement of single tombolos.
期刊介绍:
Marine Geology is the premier international journal on marine geological processes in the broadest sense. We seek papers that are comprehensive, interdisciplinary and synthetic that will be lasting contributions to the field. Although most papers are based on regional studies, they must demonstrate new findings of international significance. We accept papers on subjects as diverse as seafloor hydrothermal systems, beach dynamics, early diagenesis, microbiological studies in sediments, palaeoclimate studies and geophysical studies of the seabed. We encourage papers that address emerging new fields, for example the influence of anthropogenic processes on coastal/marine geology and coastal/marine geoarchaeology. We insist that the papers are concerned with the marine realm and that they deal with geology: with rocks, sediments, and physical and chemical processes affecting them. Papers should address scientific hypotheses: highly descriptive data compilations or papers that deal only with marine management and risk assessment should be submitted to other journals. Papers on laboratory or modelling studies must demonstrate direct relevance to marine processes or deposits. The primary criteria for acceptance of papers is that the science is of high quality, novel, significant, and of broad international interest.