Pro-C RAAGs

Pub Date : 2024-10-11 DOI:10.1016/j.jalgebra.2024.09.030
Montserrat Casals-Ruiz , Matteo Pintonello , Pavel Zalesskii
{"title":"Pro-C RAAGs","authors":"Montserrat Casals-Ruiz ,&nbsp;Matteo Pintonello ,&nbsp;Pavel Zalesskii","doi":"10.1016/j.jalgebra.2024.09.030","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>C</mi></math></span> be a class of finite groups closed under taking subgroups, quotients, and extensions with abelian kernel. The right-angled Artin pro-<span><math><mi>C</mi></math></span> group <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> (pro-<span><math><mi>C</mi></math></span> RAAG for short) is the pro-<span><math><mi>C</mi></math></span> completion of the right-angled Artin group <span><math><mi>G</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> associated with the finite simplicial graph Γ.</div><div>In the first part, we describe structural properties of pro-<span><math><mi>C</mi></math></span> RAAGs. Among others, we describe the centraliser of an element and show that pro-<span><math><mi>C</mi></math></span> RAAGs satisfy the Tits' alternative, that standard subgroups are isolated, and that 2-generated pro-<em>p</em> subgroups of pro-<span><math><mi>C</mi></math></span> RAAGs are either free pro-<em>p</em> or free abelian pro-<em>p</em>.</div><div>In the second part, we characterise splittings of pro-<span><math><mi>C</mi></math></span> RAAGs in terms of the defining graph. More precisely, we prove that a pro-<span><math><mi>C</mi></math></span> RAAG <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> splits as a non-trivial direct product if and only if Γ is a join and it splits over an abelian pro-<span><math><mi>C</mi></math></span> group if and only if a connected component of Γ is a complete graph or it has a complete disconnecting subgraph. We then use this characterisation to describe an abelian JSJ decomposition of a pro-<span><math><mi>C</mi></math></span> RAAG, in the sense of Guirardel and Levitt <span><span>[9]</span></span>.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let C be a class of finite groups closed under taking subgroups, quotients, and extensions with abelian kernel. The right-angled Artin pro-C group GΓ (pro-C RAAG for short) is the pro-C completion of the right-angled Artin group G(Γ) associated with the finite simplicial graph Γ.
In the first part, we describe structural properties of pro-C RAAGs. Among others, we describe the centraliser of an element and show that pro-C RAAGs satisfy the Tits' alternative, that standard subgroups are isolated, and that 2-generated pro-p subgroups of pro-C RAAGs are either free pro-p or free abelian pro-p.
In the second part, we characterise splittings of pro-C RAAGs in terms of the defining graph. More precisely, we prove that a pro-C RAAG GΓ splits as a non-trivial direct product if and only if Γ is a join and it splits over an abelian pro-C group if and only if a connected component of Γ is a complete graph or it has a complete disconnecting subgraph. We then use this characterisation to describe an abelian JSJ decomposition of a pro-C RAAG, in the sense of Guirardel and Levitt [9].
分享
查看原文
Pro-C RAAGs
设 C 是一类在取子群、商和扩展下封闭的有限群,具有无边内核。直角阿尔丁原 C 群 GΓ(简称原 C RAAG)是与有限简单图Γ相关联的直角阿尔丁群 G(Γ)的原 C 完成。在第一部分中,我们描述了 pro-C RAAGs 的结构性质。其中,我们描述了元素的中心化,并证明了 pro-C RAAGs 满足 Tits' 备选,标准子群是孤立的,并且 pro-C RAAGs 的 2 个生成的 pro-p 子群要么是自由 pro-p 要么是自由无边 pro-p.在第二部分中,我们从定义图的角度描述了 pro-C RAAGs 的分裂。更准确地说,我们证明了当且仅当 Γ 是一个连接时,亲 C RAAG GΓ 分裂为一个非三维直积;当且仅当 Γ 的一个连接成分是一个完整图或它有一个完整的断开子图时,它分裂于一个无性亲 C 群。然后,我们根据 Guirardel 和 Levitt [9] 的观点,利用这一特征描述亲 C RAAG 的无边 JSJ 分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信