Noncommutative differential geometry on crossed product algebras

Pub Date : 2024-10-15 DOI:10.1016/j.jalgebra.2024.10.007
Andrea Sciandra , Thomas Weber
{"title":"Noncommutative differential geometry on crossed product algebras","authors":"Andrea Sciandra ,&nbsp;Thomas Weber","doi":"10.1016/j.jalgebra.2024.10.007","DOIUrl":null,"url":null,"abstract":"<div><div>We provide a differential structure on arbitrary cleft extensions <span><math><mi>B</mi><mo>:</mo><mo>=</mo><msup><mrow><mi>A</mi></mrow><mrow><mrow><mi>co</mi></mrow><mi>H</mi></mrow></msup><mo>⊆</mo><mi>A</mi></math></span> for an <em>H</em>-comodule algebra <em>A</em>. This is achieved by constructing a covariant calculus on the corresponding crossed product algebra <span><math><mi>B</mi><msub><mrow><mi>#</mi></mrow><mrow><mi>σ</mi></mrow></msub><mi>H</mi></math></span> from the data of a bicovariant calculus on the structure Hopf algebra <em>H</em> and a calculus on the base algebra <em>B</em>, which is compatible with the 2-cocycle and measure of the crossed product. The result is a quantum principal bundle with canonical strong connection and we describe the induced bimodule covariant derivatives on associated bundles of the crossed product. All results specialize to trivial extensions and smash product algebras <em>B</em>#<em>H</em> and we give a characterization of the smash product calculus in terms of the differentials of the cleaving map <span><math><mi>j</mi><mo>:</mo><mi>H</mi><mo>→</mo><mi>A</mi></math></span> and the inclusion <span><math><mi>B</mi><mo>↪</mo><mi>A</mi></math></span>. The construction is exemplified for pointed Hopf algebras. In particular, the case of Radford Hopf algebras <span><math><msub><mrow><mi>H</mi></mrow><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></msub></math></span> is spelled out in detail.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a differential structure on arbitrary cleft extensions B:=AcoHA for an H-comodule algebra A. This is achieved by constructing a covariant calculus on the corresponding crossed product algebra B#σH from the data of a bicovariant calculus on the structure Hopf algebra H and a calculus on the base algebra B, which is compatible with the 2-cocycle and measure of the crossed product. The result is a quantum principal bundle with canonical strong connection and we describe the induced bimodule covariant derivatives on associated bundles of the crossed product. All results specialize to trivial extensions and smash product algebras B#H and we give a characterization of the smash product calculus in terms of the differentials of the cleaving map j:HA and the inclusion BA. The construction is exemplified for pointed Hopf algebras. In particular, the case of Radford Hopf algebras H(r,n,q) is spelled out in detail.
分享
查看原文
交叉积代数上的非交换微分几何
我们提供了一个关于任意劈裂扩展B:=AcoH⊆A的微分结构,它是由结构霍普夫代数H上的双变量微积分数据和基代数B上的微积分数据,通过在相应的交叉积代数B#σH上构造一个协变量微积分来实现的,这个协变量微积分与交叉积的2周期和度量相容。结果是一个具有典型强连接的量子主束,我们描述了交叉积相关束上的诱导双模协变导数。所有结果都专门用于琐碎扩展和粉碎积代数 B#H,我们还给出了粉碎积微积分在裂开映射 j:H→A 和包含 BA 的微分方面的特征。我们以尖霍普夫原子为例说明了这一构造。特别是详细说明了拉德福德霍普夫代数方程 H(r,n,q) 的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信