Unified specification tests in partially linear time series models

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Shuang Sun , Zening Song , Xiaojun Song
{"title":"Unified specification tests in partially linear time series models","authors":"Shuang Sun ,&nbsp;Zening Song ,&nbsp;Xiaojun Song","doi":"10.1016/j.csda.2024.108074","DOIUrl":null,"url":null,"abstract":"<div><div>Based on a residual marked empirical process, Cramér–von Mises and Kolmogorov–Smirnov tests are proposed for the correct specification of the nonparametric components in partially linear time series models. The tests are unified in the sense that the asymptotic distribution of residual marked empirical process is invariant across different <span><math><msup><mrow><mi>n</mi></mrow><mrow><mi>ν</mi></mrow></msup></math></span>-consistent estimators in calculating residuals (where <span><math><mi>ν</mi><mo>&gt;</mo><mn>1</mn><mo>/</mo><mn>4</mn></math></span>) under the null. In addition, the residual marked empirical process has the same power property under the sequence of local alternatives regardless of the estimators used. Achieved through a projection method, these features also enable using a computationally convenient multiplier bootstrap to approximate the unified null distributions of the test statistics. Simulations show satisfactory finite-sample performance of the proposed method. The application to validate the parametric form of conditional variance in the ARCH-X model is also highlighted, along with an empirical analysis of the conditional variance of the FTSE 100 index return series.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"203 ","pages":"Article 108074"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001580","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Based on a residual marked empirical process, Cramér–von Mises and Kolmogorov–Smirnov tests are proposed for the correct specification of the nonparametric components in partially linear time series models. The tests are unified in the sense that the asymptotic distribution of residual marked empirical process is invariant across different nν-consistent estimators in calculating residuals (where ν>1/4) under the null. In addition, the residual marked empirical process has the same power property under the sequence of local alternatives regardless of the estimators used. Achieved through a projection method, these features also enable using a computationally convenient multiplier bootstrap to approximate the unified null distributions of the test statistics. Simulations show satisfactory finite-sample performance of the proposed method. The application to validate the parametric form of conditional variance in the ARCH-X model is also highlighted, along with an empirical analysis of the conditional variance of the FTSE 100 index return series.
部分线性时间序列模型的统一规格检验
基于残差标记经验过程,提出了克拉梅尔-冯-米塞斯检验和 Kolmogorov-Smirnov 检验,以正确规范部分线性时间序列模型中的非参数成分。这些检验是统一的,即在计算残差(其中 ν>1/4)时,不同 nν 一致性估计器在空值下的残差标记经验过程的渐近分布是不变的。此外,无论使用哪种估计器,残差标记经验过程在局部替代序列下都具有相同的幂特性。通过投影法,这些特征还可以使用计算方便的乘数引导法来近似检验统计量的统一空分布。模拟结果表明,所提方法的有限样本性能令人满意。此外,还重点介绍了在 ARCH-X 模型中验证条件方差参数形式的应用,以及对富时 100 指数收益序列条件方差的实证分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信