Chuan-Jing Yang , Li-Hui Jin , Xue-Feng Dai , Wei-Jiang Gong
{"title":"Modification of Majorana leakage effect due to the presence of quantum interference","authors":"Chuan-Jing Yang , Li-Hui Jin , Xue-Feng Dai , Wei-Jiang Gong","doi":"10.1016/j.ssc.2024.115724","DOIUrl":null,"url":null,"abstract":"<div><div>This study delves into the Majorana leakage effect modified by the quantum interference, by coupling one Majorana zero mode (MZM) simultaneously to two dots in a double-quantum-dot Aharonov-Bohm interferometer device. Our findings reveal that the Majorana leakage effect significantly diverges from the single-dot case, predominantly influenced by the symmetry properties of the arms of the interferometer. Remarkably, with identical arms, the Majorana leakage effect halves the low-bias conductance magnitude for magnetic flux phase factor <span><math><mrow><mi>ϕ</mi><mo>≠</mo><mn>2</mn><mi>n</mi><mi>π</mi></mrow></math></span> (<span><math><mrow><mi>n</mi><mo>∈</mo><mi>Integer</mi></mrow></math></span>). In contrast, when inter-arm symmetry is disrupted, this halving phenomenon is restricted to instances where <span><math><mrow><mi>ϕ</mi><mo>=</mo><mn>2</mn><mi>n</mi><mi>π</mi></mrow></math></span>, accompanied by a <span><math><mrow><mn>4</mn><mi>π</mi></mrow></math></span>-periodic variation in low-bias conductances. Consequently, the Majorana leakage effect is intricately tied to the quantum interference patterns, offering insights into the quantum coherence and transport in hybrid superconducting systems.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"395 ","pages":"Article 115724"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824003016","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
This study delves into the Majorana leakage effect modified by the quantum interference, by coupling one Majorana zero mode (MZM) simultaneously to two dots in a double-quantum-dot Aharonov-Bohm interferometer device. Our findings reveal that the Majorana leakage effect significantly diverges from the single-dot case, predominantly influenced by the symmetry properties of the arms of the interferometer. Remarkably, with identical arms, the Majorana leakage effect halves the low-bias conductance magnitude for magnetic flux phase factor (). In contrast, when inter-arm symmetry is disrupted, this halving phenomenon is restricted to instances where , accompanied by a -periodic variation in low-bias conductances. Consequently, the Majorana leakage effect is intricately tied to the quantum interference patterns, offering insights into the quantum coherence and transport in hybrid superconducting systems.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.