Hao-Yang Qing, Ning Zhang, Yan-Lin He, Qun-Xiong Zhu, Yuan Xu
{"title":"Pre-connected and trainable adjacency matrix-based GCN and neighbor feature approximation for industrial fault diagnosis","authors":"Hao-Yang Qing, Ning Zhang, Yan-Lin He, Qun-Xiong Zhu, Yuan Xu","doi":"10.1016/j.jprocont.2024.103320","DOIUrl":null,"url":null,"abstract":"<div><div>Industrial fault diagnosis methods based on graph convolution network (GCN) becomes a hot topic for its great feature extraction ability to multivariate time-series data. However, GCNs ignore inter-sample temporality when constructing the adjacency matrix (AM), leading to low prediction accuracy. A novel fault diagnosis method based on pre-connected and trainable AM-based GCN and neighbor feature approximation (PTGCN-FA) is proposed at the node-level task. Firstly, PTGCN-FA introduces the temporal nearest neighbors into spatial nearest neighbors to pre-connect and construct the AM. Then, the AM is trained only where the samples are connected, which makes the best weights obtained and reduces the time complexity of the model. Finally, after the GCN layers, the trained AM is introduced into the approximation of features, which are neighbors in the original sample space. Two process industry cases are carried out, and the simulation results including diagnosis accuracy, confusion matrix, study to the ratio of labeled data and an ablation experiment verify PTGCN-FA has more efficient and accurate diagnostic performance than related methods. Additionally, the analysis of the temporal neighborhood weight parameter shows that the performance of fault diagnosis can be improved by considering both temporal and spatial information between samples.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"143 ","pages":"Article 103320"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424001604","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Industrial fault diagnosis methods based on graph convolution network (GCN) becomes a hot topic for its great feature extraction ability to multivariate time-series data. However, GCNs ignore inter-sample temporality when constructing the adjacency matrix (AM), leading to low prediction accuracy. A novel fault diagnosis method based on pre-connected and trainable AM-based GCN and neighbor feature approximation (PTGCN-FA) is proposed at the node-level task. Firstly, PTGCN-FA introduces the temporal nearest neighbors into spatial nearest neighbors to pre-connect and construct the AM. Then, the AM is trained only where the samples are connected, which makes the best weights obtained and reduces the time complexity of the model. Finally, after the GCN layers, the trained AM is introduced into the approximation of features, which are neighbors in the original sample space. Two process industry cases are carried out, and the simulation results including diagnosis accuracy, confusion matrix, study to the ratio of labeled data and an ablation experiment verify PTGCN-FA has more efficient and accurate diagnostic performance than related methods. Additionally, the analysis of the temporal neighborhood weight parameter shows that the performance of fault diagnosis can be improved by considering both temporal and spatial information between samples.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.