A novel prediction method for rolling contact fatigue damage of the pearlite rail materials based on shakedown limits and rough set theory with cloud model
Yulong Xie , Haohao Ding , Zhiyong Shi , Enrico Meli , Jun Guo , Qiyue Liu , Roger Lewis , Wenjian Wang
{"title":"A novel prediction method for rolling contact fatigue damage of the pearlite rail materials based on shakedown limits and rough set theory with cloud model","authors":"Yulong Xie , Haohao Ding , Zhiyong Shi , Enrico Meli , Jun Guo , Qiyue Liu , Roger Lewis , Wenjian Wang","doi":"10.1016/j.ijfatigue.2024.108654","DOIUrl":null,"url":null,"abstract":"<div><div>Evaluation and prediction of wheel-rail rolling contact fatigue (RCF) damage can provide important theoretical guarantees for the service safety of wheels and rails and help make maintenance easier to plan. This study aims to develop a novel method for evaluating and predicting RCF damage of the pearlite rail materials with various initial shear yield strengths (<em>k</em><sub>e</sub>). Based on the rough set mathematical theory incorporated within the cloud model of the comprehensive evaluation index (<em>P</em><sub>0</sub>/<em>k</em><sub>e</sub>*<em>μ</em><sup>t</sup>), a novel evaluation and prediction method for RCF damage states of various pearlite rail materials was constructed using the shakedown limits for pearlite rail materials with various initial shear yield strengths. To develop this novel prediction method, different evaluation indices for RCF damage states were designed. A comprehensive certainty approach was introduced to quantitatively analyze the actual measured values of distinct evaluation indices that corresponds to different RCF damage states, wherein the maximum value rule was applied. Moreover, the prediction results were confirmed after further verifying using the actual measured value of the <em>P</em><sub>0</sub>/<em>k</em><sub>e</sub>*<em>μ</em><sup>t</sup>. The results indicated that the predicted results were consistent with the test outcomes. The key feature of this prediction method was that it involved both the intrinsic shear yield strength of evaluated pearlite rail materials and wheel-rail rolling contact variables. On the basis of the two-dimensional classical shakedown map, a three-dimensional shakedown limit diagram for rail materials with varying initial shear yield strengths was further constructed using this novel prediction method. The three-dimensional shakedown limit diagram featured an inclined curved surface. As the initial shear yield strength of the pearlite rail materials increased, the curved surface tilted downward, indicating that an increase in the initial <em>k</em><sub>e</sub> value of the pearlite rail materials could result in a lower shakedown limit.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"190 ","pages":"Article 108654"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005139","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Evaluation and prediction of wheel-rail rolling contact fatigue (RCF) damage can provide important theoretical guarantees for the service safety of wheels and rails and help make maintenance easier to plan. This study aims to develop a novel method for evaluating and predicting RCF damage of the pearlite rail materials with various initial shear yield strengths (ke). Based on the rough set mathematical theory incorporated within the cloud model of the comprehensive evaluation index (P0/ke*μt), a novel evaluation and prediction method for RCF damage states of various pearlite rail materials was constructed using the shakedown limits for pearlite rail materials with various initial shear yield strengths. To develop this novel prediction method, different evaluation indices for RCF damage states were designed. A comprehensive certainty approach was introduced to quantitatively analyze the actual measured values of distinct evaluation indices that corresponds to different RCF damage states, wherein the maximum value rule was applied. Moreover, the prediction results were confirmed after further verifying using the actual measured value of the P0/ke*μt. The results indicated that the predicted results were consistent with the test outcomes. The key feature of this prediction method was that it involved both the intrinsic shear yield strength of evaluated pearlite rail materials and wheel-rail rolling contact variables. On the basis of the two-dimensional classical shakedown map, a three-dimensional shakedown limit diagram for rail materials with varying initial shear yield strengths was further constructed using this novel prediction method. The three-dimensional shakedown limit diagram featured an inclined curved surface. As the initial shear yield strength of the pearlite rail materials increased, the curved surface tilted downward, indicating that an increase in the initial ke value of the pearlite rail materials could result in a lower shakedown limit.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.