Xi Deng , Shun-Peng Zhu , Lanyi Wang , Changqi Luo , Sicheng Fu , Qingyuan Wang
{"title":"Probabilistic framework for strain-based fatigue life prediction and uncertainty quantification using interpretable machine learning","authors":"Xi Deng , Shun-Peng Zhu , Lanyi Wang , Changqi Luo , Sicheng Fu , Qingyuan Wang","doi":"10.1016/j.ijfatigue.2024.108647","DOIUrl":null,"url":null,"abstract":"<div><div>Establishing a unified fatigue life prediction model and quantifying the uncertainty in the mechanical behavior of materials are critical to ensure the structural integrity and equipment performance. For the commonly-used strain-based fatigue methods, existing estimation methods exhibit inevitable deviations, while data-driven methods have shown poor extrapolation ability and interpretability. Therefore, this paper aims to develop a probabilistic framework for strain-based fatigue life prediction and uncertainty quantification (UQ) to provide an indication for fatigue design/assessment using interpretable machine learning (ML) techniques. Based on Shapley additive explanations (SHAP) and symbolic regression (SR), interpretable prediction models with concise expressions and outstanding prediction performance are established and optimized according to the priori physical knowledge. Moreover, accounting for the material variability, the probabilistic assessment with UQ excellently validates the prediction model, and quantifies the variability of ε-N curves. The proposed framework provides a valuable reference and shows promising prospects in fatigue design for engineering components.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"190 ","pages":"Article 108647"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005061","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Establishing a unified fatigue life prediction model and quantifying the uncertainty in the mechanical behavior of materials are critical to ensure the structural integrity and equipment performance. For the commonly-used strain-based fatigue methods, existing estimation methods exhibit inevitable deviations, while data-driven methods have shown poor extrapolation ability and interpretability. Therefore, this paper aims to develop a probabilistic framework for strain-based fatigue life prediction and uncertainty quantification (UQ) to provide an indication for fatigue design/assessment using interpretable machine learning (ML) techniques. Based on Shapley additive explanations (SHAP) and symbolic regression (SR), interpretable prediction models with concise expressions and outstanding prediction performance are established and optimized according to the priori physical knowledge. Moreover, accounting for the material variability, the probabilistic assessment with UQ excellently validates the prediction model, and quantifies the variability of ε-N curves. The proposed framework provides a valuable reference and shows promising prospects in fatigue design for engineering components.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.