Yarong Liu , Baoming Gong , Shuo Liu , Caiyan Deng , Yangyang Zhao , Yong Liu , Weitao Hu
{"title":"Low-cycle fatigue properties and fracture location transition mechanism of dissimilar steel welded joints in towers of wind turbines","authors":"Yarong Liu , Baoming Gong , Shuo Liu , Caiyan Deng , Yangyang Zhao , Yong Liu , Weitao Hu","doi":"10.1016/j.ijfatigue.2024.108672","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the low-cycle fatigue (LCF) behavior of two types of dissimilar steel welded joints (DSWJs): AISI 1035 & S550Q and AISI 1020 & S550Q. Digital image correlation (DIC) and finite element analysis (FEA) were used to analyze the heterogeneous strain distribution. The results reveal that the location of maximum strain, which is load-dependent and related to strength mismatch, corresponds to the fracture location of the LCF specimens. Specifically, the crack initiation site shifts from the weld toe to the base metal as strain increases. Moreover, the weld reinforcement of the DSWJs significantly affects the failure site transition, introducing strain concentration at lower stress levels while enhancing deformation resistance at higher stress levels, as evidenced by DIC strain measurements and FEA. These findings highlight the importance of joint reinforcement profile, strength mismatch and external load level in designing DSWJs for wind turbine towers against LCF failure.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"190 ","pages":"Article 108672"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005310","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the low-cycle fatigue (LCF) behavior of two types of dissimilar steel welded joints (DSWJs): AISI 1035 & S550Q and AISI 1020 & S550Q. Digital image correlation (DIC) and finite element analysis (FEA) were used to analyze the heterogeneous strain distribution. The results reveal that the location of maximum strain, which is load-dependent and related to strength mismatch, corresponds to the fracture location of the LCF specimens. Specifically, the crack initiation site shifts from the weld toe to the base metal as strain increases. Moreover, the weld reinforcement of the DSWJs significantly affects the failure site transition, introducing strain concentration at lower stress levels while enhancing deformation resistance at higher stress levels, as evidenced by DIC strain measurements and FEA. These findings highlight the importance of joint reinforcement profile, strength mismatch and external load level in designing DSWJs for wind turbine towers against LCF failure.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.