Weiming Wang , Shan Li , Li Yang , Jiepeng Liu , Yi Xia , Ligang Liu
{"title":"Build orientation optimization considering thermal distortion in additive manufacturing","authors":"Weiming Wang , Shan Li , Li Yang , Jiepeng Liu , Yi Xia , Ligang Liu","doi":"10.1016/j.cagd.2024.102393","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing (AM) technology enables the fabrication of three-dimensional objects with complex shapes and has been extensively applied in various industries. AM is a layer-wise fabrication process where a variety of factors affect manufacturing performance and product quality. One of the most important factor is the thermal distortion, which is caused by the high temperature gradients in the fabrication process. The thermal distortion is also influenced by the support structure of the printing object, and this distortion varies depending on the chosen build orientation. Additionally, for the overhang regions, extra supports are required for printing and will be removed in the post-processing. For the 3D printing process, the thermal distortion and support requirements are interconnected and linked to build orientation. To investigate suitable build orientation, the thermal distortion and support are quantified, and a multi-objective build orientation optimization method is proposed to obtain representative orientations. Based on the proposed method, 9 typical 3D shapes are evaluated. In addition, the single-objective build orientation optimization problem is studied and compared, and the influence of slicing layers per stage on the simulation accuracy and efficiency is discussed. The effectiveness and applicability of the method are verified, and representative directions can be obtained for different fabrication purposes.</div></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"114 ","pages":"Article 102393"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624001274","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing (AM) technology enables the fabrication of three-dimensional objects with complex shapes and has been extensively applied in various industries. AM is a layer-wise fabrication process where a variety of factors affect manufacturing performance and product quality. One of the most important factor is the thermal distortion, which is caused by the high temperature gradients in the fabrication process. The thermal distortion is also influenced by the support structure of the printing object, and this distortion varies depending on the chosen build orientation. Additionally, for the overhang regions, extra supports are required for printing and will be removed in the post-processing. For the 3D printing process, the thermal distortion and support requirements are interconnected and linked to build orientation. To investigate suitable build orientation, the thermal distortion and support are quantified, and a multi-objective build orientation optimization method is proposed to obtain representative orientations. Based on the proposed method, 9 typical 3D shapes are evaluated. In addition, the single-objective build orientation optimization problem is studied and compared, and the influence of slicing layers per stage on the simulation accuracy and efficiency is discussed. The effectiveness and applicability of the method are verified, and representative directions can be obtained for different fabrication purposes.
期刊介绍:
The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following:
-Mathematical and Geometric Foundations-
Curve, Surface, and Volume generation-
CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision-
Industrial, medical, and scientific applications.
The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.