Tejas , A. Princy , S Masilla Moses Kennedy , M.I. Sayyed , Taha A. Hanafy , Sudha D. Kamath
{"title":"Structural, optical, and thermal traits of Sm³⁺-doped SrB₂O₄ phosphors for solid-state lighting applications","authors":"Tejas , A. Princy , S Masilla Moses Kennedy , M.I. Sayyed , Taha A. Hanafy , Sudha D. Kamath","doi":"10.1016/j.solidstatesciences.2024.107724","DOIUrl":null,"url":null,"abstract":"<div><div>We synthesized Sm³⁺-doped SrB₂O₄ phosphors through a solid-state reaction method, varying the Sm³⁺ doping concentrations. Structural and morphological characteristics of material were investigated using Fourier-transform infrared spectroscopy (FTIR), X-Ray Diffraction (XRD) and scanning electron microscopy (SEM). Optical transitions were analyzed by recording the diffuse reflectance spectroscopy, while photoluminescent (PL) spectra were used to evaluate luminescence properties. The PL spectra revealed a strong orange emission at 598 nm under 402 nm excitation. The optimal Sm³⁺ doping concentration was determined to be 0.02 mol, beyond which concentration quenching occurred. This quenching is attributed to exchange-type interactions, which facilitate non-radiative energy relaxation. The CIE color chromaticity coordinates of all the synthesized phosphors fell within the orange region of the chromaticity diagram. Temperature dependent photoluminescence revealed lower activation energy and phonon energy. Thermal quenching temperature was calculated which is inline with commercially available LEDs. All of these results indicate the candidature of SrB<sub>2</sub>O<sub>4</sub> phosphor doped with Sm<sup>3+</sup> ions for solid state lighting and optical thermal sensing applications.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"157 ","pages":"Article 107724"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255824002899","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
We synthesized Sm³⁺-doped SrB₂O₄ phosphors through a solid-state reaction method, varying the Sm³⁺ doping concentrations. Structural and morphological characteristics of material were investigated using Fourier-transform infrared spectroscopy (FTIR), X-Ray Diffraction (XRD) and scanning electron microscopy (SEM). Optical transitions were analyzed by recording the diffuse reflectance spectroscopy, while photoluminescent (PL) spectra were used to evaluate luminescence properties. The PL spectra revealed a strong orange emission at 598 nm under 402 nm excitation. The optimal Sm³⁺ doping concentration was determined to be 0.02 mol, beyond which concentration quenching occurred. This quenching is attributed to exchange-type interactions, which facilitate non-radiative energy relaxation. The CIE color chromaticity coordinates of all the synthesized phosphors fell within the orange region of the chromaticity diagram. Temperature dependent photoluminescence revealed lower activation energy and phonon energy. Thermal quenching temperature was calculated which is inline with commercially available LEDs. All of these results indicate the candidature of SrB2O4 phosphor doped with Sm3+ ions for solid state lighting and optical thermal sensing applications.
期刊介绍:
Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments.
Key topics for stand-alone papers and special issues:
-Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials
-Physical properties, emphasizing but not limited to the electrical, magnetical and optical features
-Materials related to information technology and energy and environmental sciences.
The journal publishes feature articles from experts in the field upon invitation.
Solid State Sciences - your gateway to energy-related materials.