Andrea Cristina Novack , Alexandre de Fátima Cobre , Dile Pontarolo Stremel , Luana Mota Ferreira , Michel Leandro Campos , Roberto Pontarolo
{"title":"Development and validation of a new method by MIR-FTIR and chemometrics for the early diagnosis of leprosy and evaluation of the treatment effect","authors":"Andrea Cristina Novack , Alexandre de Fátima Cobre , Dile Pontarolo Stremel , Luana Mota Ferreira , Michel Leandro Campos , Roberto Pontarolo","doi":"10.1016/j.chemolab.2024.105248","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Develop a new method for diagnosing leprosy and monitoring the pharmacological treatment effect of patients.</div></div><div><h3>Material and methods</h3><div>Plasma samples from patients diagnosed with leprosy (n = 211) who had not yet received any pharmacological treatment were collected at a basic health unit in Brazil. After treatment, samples were collected from the same patients (n = 125). Plasma samples from healthy volunteers were also collected (n = 179) and used as a control group. All samples were analyzed by Fourier transform mid-infrared spectrophotometry (MIR-FTIR). The spectral data of the samples were subjected to chemometric analysis. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to predict diagnosis and monitor pharmacological treatment.</div></div><div><h3>Results</h3><div>The PCA model successfully distinguished among three sample classes: healthy individuals, pre-treatment leprosy patients, and post-treatment leprosy patients. The PLS-DA algorithm accurately classified healthy, treated, and diseased samples, facilitating both reliable diagnosis and treatment monitoring for leprosy. The model achieved a sensitivity of 97 %–100 %, specificity of 100 %, and accuracy ranging from 99 % to 100 %. Furthermore, when tested on plasma samples from patients with other conditions—renal failure (n = 1032), hypertriglyceridemia (n = 100), hypercholesterolemia (n = 100), and mixed dyslipidemia (n = 100)—the model correctly classified these as negative for leprosy, with diagnostic specificity between 93 % and 96 %.</div></div><div><h3>Conclusion</h3><div>The MIR-FTIR technique combined with PLS-DA analysis proved to be a highly effective tool for screening leprosy patients and monitoring treatment outcomes. Given its low cost, this method could be easily implemented in laboratories across emerging and low-income countries.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"254 ","pages":"Article 105248"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001886","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Develop a new method for diagnosing leprosy and monitoring the pharmacological treatment effect of patients.
Material and methods
Plasma samples from patients diagnosed with leprosy (n = 211) who had not yet received any pharmacological treatment were collected at a basic health unit in Brazil. After treatment, samples were collected from the same patients (n = 125). Plasma samples from healthy volunteers were also collected (n = 179) and used as a control group. All samples were analyzed by Fourier transform mid-infrared spectrophotometry (MIR-FTIR). The spectral data of the samples were subjected to chemometric analysis. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to predict diagnosis and monitor pharmacological treatment.
Results
The PCA model successfully distinguished among three sample classes: healthy individuals, pre-treatment leprosy patients, and post-treatment leprosy patients. The PLS-DA algorithm accurately classified healthy, treated, and diseased samples, facilitating both reliable diagnosis and treatment monitoring for leprosy. The model achieved a sensitivity of 97 %–100 %, specificity of 100 %, and accuracy ranging from 99 % to 100 %. Furthermore, when tested on plasma samples from patients with other conditions—renal failure (n = 1032), hypertriglyceridemia (n = 100), hypercholesterolemia (n = 100), and mixed dyslipidemia (n = 100)—the model correctly classified these as negative for leprosy, with diagnostic specificity between 93 % and 96 %.
Conclusion
The MIR-FTIR technique combined with PLS-DA analysis proved to be a highly effective tool for screening leprosy patients and monitoring treatment outcomes. Given its low cost, this method could be easily implemented in laboratories across emerging and low-income countries.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.