Derek W. G. Sears, Alexander Sehlke, Harrison H. Schmitt, the ANGSA Science Team
{"title":"Thermoluminescence and Apollo 17 ANGSA Lunar Samples: NASA's Fifty-Year Experiment and Prospecting for Cold Traps","authors":"Derek W. G. Sears, Alexander Sehlke, Harrison H. Schmitt, the ANGSA Science Team","doi":"10.1029/2024JE008358","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>By placing Apollo 17 regolith samples in a freezer, and storing an equivalent set at room temperature, NASA effectively performed a 50-year experiment in the kinetics of natural thermoluminescence (TL) of the lunar regolith. We have performed a detailed analysis of the TL characteristics of four regolith samples: a sunlit sample near the landing site (70180), a sample 3 m deep near the landing site (70001), a sample partially shaded by a boulder (72320), and a sample completely shaded by a boulder (76240). We find evidence for a total of eight discrete TL peaks, five apparent in curves for samples in the natural state and seven in samples irradiated in the laboratory at room temperature. For each peak, we suggest values for peak temperatures and the kinetic parameters E (activation energy, i.e. “trap depth,” eV) and s (Arrhenius factor, s<sup>−1</sup>). The lowest natural TL peak in the continuously shaded sample 76240 dropped in intensity by 60 ± 10% (1976 vs. present room temperature samples) and 43 ± 8% (freezer vs. room temperature samples) over the 50-year storage period, while sunlit and partially shaded samples (70001, 70180, 72321, 72320) showed no change. These results are consistent with the E and s parameters we determined. The large number of peaks, and the appearance of additional peaks after irradiation at room temperature, and literature data, suggest that glow curve peaks are present in lunar regolith at ∼100 K and their intensity can be used to determine temperature and storage time. Thus, a TL instrument on the Moon could be used to prospect for micro-cold traps capable of the storage of water and other volatiles.</p>\n </section>\n </div>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008358","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008358","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
By placing Apollo 17 regolith samples in a freezer, and storing an equivalent set at room temperature, NASA effectively performed a 50-year experiment in the kinetics of natural thermoluminescence (TL) of the lunar regolith. We have performed a detailed analysis of the TL characteristics of four regolith samples: a sunlit sample near the landing site (70180), a sample 3 m deep near the landing site (70001), a sample partially shaded by a boulder (72320), and a sample completely shaded by a boulder (76240). We find evidence for a total of eight discrete TL peaks, five apparent in curves for samples in the natural state and seven in samples irradiated in the laboratory at room temperature. For each peak, we suggest values for peak temperatures and the kinetic parameters E (activation energy, i.e. “trap depth,” eV) and s (Arrhenius factor, s−1). The lowest natural TL peak in the continuously shaded sample 76240 dropped in intensity by 60 ± 10% (1976 vs. present room temperature samples) and 43 ± 8% (freezer vs. room temperature samples) over the 50-year storage period, while sunlit and partially shaded samples (70001, 70180, 72321, 72320) showed no change. These results are consistent with the E and s parameters we determined. The large number of peaks, and the appearance of additional peaks after irradiation at room temperature, and literature data, suggest that glow curve peaks are present in lunar regolith at ∼100 K and their intensity can be used to determine temperature and storage time. Thus, a TL instrument on the Moon could be used to prospect for micro-cold traps capable of the storage of water and other volatiles.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.