Laterally Modulating Carrier Concentration by Ion Irradiation in CdO Thin Films for Mid-IR Plasmonics

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Angela J. Cleri, Mingze He, Maxwell J. Tolchin, Christopher Gubbin, Eric Lang, Khalid Hattar, Simone De Liberato, Joshua D. Caldwell, Jon-Paul Maria
{"title":"Laterally Modulating Carrier Concentration by Ion Irradiation in CdO Thin Films for Mid-IR Plasmonics","authors":"Angela J. Cleri,&nbsp;Mingze He,&nbsp;Maxwell J. Tolchin,&nbsp;Christopher Gubbin,&nbsp;Eric Lang,&nbsp;Khalid Hattar,&nbsp;Simone De Liberato,&nbsp;Joshua D. Caldwell,&nbsp;Jon-Paul Maria","doi":"10.1002/adom.202401009","DOIUrl":null,"url":null,"abstract":"<p>This report demonstrates tunable carrier densities in CdO thin films through local ion irradiation, providing lateral control of mid-IR optical properties. Ion-solid interactions produce donor-like defects that boost electron concentrations from the practical minimum of 2.5 × 10<sup>19</sup> cm<sup>−3</sup> to a maximum of 2.5 × 10<sup>20</sup> cm<sup>−3</sup> by metered ion exposure. This range is achieved using He, N, Ar, or Au ions at 1–2.8 MeV; when normalized by displacements per atom, all ion species produce comparable results. Since CdO is well-described by the Drude model, irradiation-tuned carrier densities directly alter the infrared dielectric function, and in turn, mid-infrared optical properties. Further, it is demonstrated that by combining irradiation with traditional lithography, CdO films expose to ions in the presence of 3-µm thick, patterned photoresist exhibit lateral carrier density profiles with ≈400-nm resolution. Scanning near-field optical microscopy reveals sharp optical interfaces with almost no companion contrast in surface morphology, microstructure, or crystallinity. Finally, CdO lateral homostructures supporting surface plasmon polaritons (SPPs) are demonstrated whose dispersion relation can be tuned through periodic patterning in a monolithic platform by simple nanofabrication. Numerical simulations show these polaritons result from strong coupling between excitations at CdO plasma frequencies and SPPs supported by the platinum substrate.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 30","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202401009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401009","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This report demonstrates tunable carrier densities in CdO thin films through local ion irradiation, providing lateral control of mid-IR optical properties. Ion-solid interactions produce donor-like defects that boost electron concentrations from the practical minimum of 2.5 × 1019 cm−3 to a maximum of 2.5 × 1020 cm−3 by metered ion exposure. This range is achieved using He, N, Ar, or Au ions at 1–2.8 MeV; when normalized by displacements per atom, all ion species produce comparable results. Since CdO is well-described by the Drude model, irradiation-tuned carrier densities directly alter the infrared dielectric function, and in turn, mid-infrared optical properties. Further, it is demonstrated that by combining irradiation with traditional lithography, CdO films expose to ions in the presence of 3-µm thick, patterned photoresist exhibit lateral carrier density profiles with ≈400-nm resolution. Scanning near-field optical microscopy reveals sharp optical interfaces with almost no companion contrast in surface morphology, microstructure, or crystallinity. Finally, CdO lateral homostructures supporting surface plasmon polaritons (SPPs) are demonstrated whose dispersion relation can be tuned through periodic patterning in a monolithic platform by simple nanofabrication. Numerical simulations show these polaritons result from strong coupling between excitations at CdO plasma frequencies and SPPs supported by the platinum substrate.

Abstract Image

通过离子辐照横向调节氧化镉薄膜中的载流子浓度,实现中红外等离子体技术
本报告展示了通过局部离子辐照实现氧化镉薄膜中载流子密度的可调,从而对中红外光学特性进行横向控制。通过计量离子照射,离子-固体相互作用产生的供体样缺陷可将电子浓度从实际最低的 2.5 × 1019 cm-3 提高到最高的 2.5 × 1020 cm-3。使用 1-2.8 MeV 的 He、N、Ar 或 Au 离子可以达到这个范围;如果按每个原子的位移进行归一化,所有离子种类产生的结果相当。由于德鲁德模型很好地描述了氧化镉,辐照调谐载流子密度直接改变了红外介电函数,进而改变了中红外光学特性。此外,研究还证明,通过将辐照与传统光刻技术相结合,在 3 微米厚的图案化光刻胶存在下暴露于离子的氧化镉薄膜会呈现出分辨率≈400 纳米的横向载流子密度曲线。扫描近场光学显微镜显示出清晰的光学界面,表面形态、微观结构或结晶度几乎没有伴生对比。最后,还展示了支持表面等离子体极化子(SPPs)的氧化镉横向同质结构,其色散关系可通过简单的纳米制造在单片平台上进行周期性图案化调整。数值模拟显示,这些极化子是氧化镉等离子频率的激发与铂基底支持的 SPP 之间的强耦合产生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信