Deep and Shallow Feature Fusion in Feature Score Level for Palmprint Recognition

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yihang Wu, Junlin Hu
{"title":"Deep and Shallow Feature Fusion in Feature Score Level for Palmprint Recognition","authors":"Yihang Wu,&nbsp;Junlin Hu","doi":"10.1049/2024/5683547","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Contactless palmprint recognition offers friendly customer experience due to its ability to operate without touching the recognition device under rigid constrained conditions. Recent palmprint recognition methods have shown promising accuracy; however, there still exist some issues that need to be further studied such as the limited discrimination of the single feature and how to effectively fuse deep features and shallow features. In this paper, deep features and shallow features are integrated into a unified framework using feature-level and score-level fusion methods. Specifically, deep feature is extracted by residual neural network (ResNet), and shallow features are extracted by principal component analysis (PCA), linear discriminant analysis (LDA), and competitive coding (CompCode). In feature-level fusion stage, ResNet feature and PCA feature are dimensionally reduced and fused by canonical correlation analysis technique to achieve the fused feature for the next stage. In score-level fusion stage, score information is embedded in the fused feature, LDA feature, and CompCode feature to obtain a more reliable and robust recognition performance. The proposed method achieves competitive performance on Tongji dataset and demonstrates more satisfying generalization capabilities on IITD and CASIA datasets. Comprehensive validation across three palmprint datasets confirms the effectiveness of our proposed deep and shallow feature fusion approach.</p>\n </div>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"2024 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/5683547","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/5683547","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Contactless palmprint recognition offers friendly customer experience due to its ability to operate without touching the recognition device under rigid constrained conditions. Recent palmprint recognition methods have shown promising accuracy; however, there still exist some issues that need to be further studied such as the limited discrimination of the single feature and how to effectively fuse deep features and shallow features. In this paper, deep features and shallow features are integrated into a unified framework using feature-level and score-level fusion methods. Specifically, deep feature is extracted by residual neural network (ResNet), and shallow features are extracted by principal component analysis (PCA), linear discriminant analysis (LDA), and competitive coding (CompCode). In feature-level fusion stage, ResNet feature and PCA feature are dimensionally reduced and fused by canonical correlation analysis technique to achieve the fused feature for the next stage. In score-level fusion stage, score information is embedded in the fused feature, LDA feature, and CompCode feature to obtain a more reliable and robust recognition performance. The proposed method achieves competitive performance on Tongji dataset and demonstrates more satisfying generalization capabilities on IITD and CASIA datasets. Comprehensive validation across three palmprint datasets confirms the effectiveness of our proposed deep and shallow feature fusion approach.

Abstract Image

特征分数级掌纹识别中的深层和浅层特征融合
非接触式掌纹识别技术能够在刚性约束条件下不接触识别设备进行操作,为客户提供友好的体验。最近的掌纹识别方法已经显示出良好的准确性,但仍存在一些需要进一步研究的问题,如单一特征的辨别能力有限,以及如何有效地融合深层特征和浅层特征等。本文采用特征级和分数级融合方法,将深度特征和浅层特征整合到一个统一的框架中。具体来说,深度特征通过残差神经网络(ResNet)提取,浅层特征通过主成分分析(PCA)、线性判别分析(LDA)和竞争编码(CompCode)提取。在特征级融合阶段,ResNet 特征和 PCA 特征被降维,并通过典型相关分析技术进行融合,以获得下一阶段的融合特征。在分数级融合阶段,分数信息被嵌入到融合特征、LDA 特征和 CompCode 特征中,以获得更可靠、更稳健的识别性能。所提出的方法在同济数据集上取得了具有竞争力的性能,并在 IITD 和 CASIA 数据集上展示了更令人满意的泛化能力。三个掌纹数据集的综合验证证实了我们提出的深浅特征融合方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Biometrics
IET Biometrics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍: The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding. The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies: Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.) Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches Soft biometrics and information fusion for identification, verification and trait prediction Human factors and the human-computer interface issues for biometric systems, exception handling strategies Template construction and template management, ageing factors and their impact on biometric systems Usability and user-oriented design, psychological and physiological principles and system integration Sensors and sensor technologies for biometric processing Database technologies to support biometric systems Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection Biometric cryptosystems, security and biometrics-linked encryption Links with forensic processing and cross-disciplinary commonalities Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated Applications and application-led considerations Position papers on technology or on the industrial context of biometric system development Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions Relevant ethical and social issues
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信