Simulation of Lithium Adsorption in 4H–SiC, Electron Transfer, and Thermodynamic Functions of Si–C–Li Compounds

IF 0.7 4区 化学 Q4 CHEMISTRY, PHYSICAL
S. M. Asadov, S. N. Mustafaeva, V. F. Lukichev
{"title":"Simulation of Lithium Adsorption in 4H–SiC, Electron Transfer, and Thermodynamic Functions of Si–C–Li Compounds","authors":"S. M. Asadov,&nbsp;S. N. Mustafaeva,&nbsp;V. F. Lukichev","doi":"10.1134/S0036024424701607","DOIUrl":null,"url":null,"abstract":"<p>The adsorption, electronic, and thermodynamic properties of the 2 × 2 × 1 and 3 × 3 × 1 supercells of the binary compounds (<span>\\({{{\\text{A}}}_{n}}{{{\\text{B}}}_{m}} = 4{\\text{H}}- {\\text{SiC}},\\)</span> <span>\\({{\\alpha }}{\\kern 1pt} {\\text{ - }}{\\kern 1pt} {\\text{L}}{{{\\text{i}}}_{2}}{{{\\text{C}}}_{2}},\\)</span> <span>\\({\\text{L}}{{{\\text{i}}}_{n}}{\\text{S}}{{{\\text{i}}}_{m}}\\)</span>) of the Si–C–Li system were studied using the density functional theory (DFT). The theoretical capacity of the 4H–SiC hexagonal polytype was found to exceed that of graphite (370 mA h/g) used as an anode material for lithium-ion batteries. The crystalline compounds <span>\\({{{\\text{A}}}_{n}}{{{\\text{B}}}_{m}}\\)</span> have electronic conductivity. The DFT calculations used the exchange-correlation functional within the framework of the generalized gradient approximation (GGA PBE). The parameters of the crystal structure, the adsorption energy of the <span>\\({\\text{L}}{{{\\text{i}}}_{{{\\text{ads}}}}}\\)</span> adatom on the 4H–SiC substrate, the electronic band structure, and the thermodynamic properties of the supercells of <span>\\({{{\\text{A}}}_{n}}{{{\\text{B}}}_{m}}\\)</span> compounds were calculated. The thermodynamically favorable position of <span>\\({\\text{L}}{{{\\text{i}}}_{{{\\text{ads}}}}}\\)</span> and the stable configuration of the 4H–SiC〈Li<sub>ads</sub>〉 supercells were determined. The DFT calculations of the enthalpy of formation of <span>\\({{{\\text{A}}}_{n}}{{{\\text{B}}}_{m}}\\)</span> compounds in the Si–C–Li ternary system were performed. The calculated characteristics of <span>\\({{{\\text{A}}}_{n}}{{{\\text{B}}}_{m}}\\)</span> agree with the experimental data. The equilibrium connodes in the concentration triangle of Si–C–Li were established using the standard thermodynamic potentials of <span>\\({{{\\text{A}}}_{n}}{{{\\text{B}}}_{m}}\\)</span> compounds and the changes in energy in solid-phase exchange reactions between these compounds. An isothermal section of the phase diagram of Si–C–Li at 298 K was constructed.</p>","PeriodicalId":767,"journal":{"name":"Russian Journal of Physical Chemistry A","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry A","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0036024424701607","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The adsorption, electronic, and thermodynamic properties of the 2 × 2 × 1 and 3 × 3 × 1 supercells of the binary compounds (\({{{\text{A}}}_{n}}{{{\text{B}}}_{m}} = 4{\text{H}}- {\text{SiC}},\) \({{\alpha }}{\kern 1pt} {\text{ - }}{\kern 1pt} {\text{L}}{{{\text{i}}}_{2}}{{{\text{C}}}_{2}},\) \({\text{L}}{{{\text{i}}}_{n}}{\text{S}}{{{\text{i}}}_{m}}\)) of the Si–C–Li system were studied using the density functional theory (DFT). The theoretical capacity of the 4H–SiC hexagonal polytype was found to exceed that of graphite (370 mA h/g) used as an anode material for lithium-ion batteries. The crystalline compounds \({{{\text{A}}}_{n}}{{{\text{B}}}_{m}}\) have electronic conductivity. The DFT calculations used the exchange-correlation functional within the framework of the generalized gradient approximation (GGA PBE). The parameters of the crystal structure, the adsorption energy of the \({\text{L}}{{{\text{i}}}_{{{\text{ads}}}}}\) adatom on the 4H–SiC substrate, the electronic band structure, and the thermodynamic properties of the supercells of \({{{\text{A}}}_{n}}{{{\text{B}}}_{m}}\) compounds were calculated. The thermodynamically favorable position of \({\text{L}}{{{\text{i}}}_{{{\text{ads}}}}}\) and the stable configuration of the 4H–SiC〈Liads〉 supercells were determined. The DFT calculations of the enthalpy of formation of \({{{\text{A}}}_{n}}{{{\text{B}}}_{m}}\) compounds in the Si–C–Li ternary system were performed. The calculated characteristics of \({{{\text{A}}}_{n}}{{{\text{B}}}_{m}}\) agree with the experimental data. The equilibrium connodes in the concentration triangle of Si–C–Li were established using the standard thermodynamic potentials of \({{{\text{A}}}_{n}}{{{\text{B}}}_{m}}\) compounds and the changes in energy in solid-phase exchange reactions between these compounds. An isothermal section of the phase diagram of Si–C–Li at 298 K was constructed.

Abstract Image

模拟 4H-SiC 中锂的吸附、电子转移以及硅-碳-锂化合物的热力学函数
二元化合物({{text{A}}}_{n}}{{text{B}}}_{m}}=4{{text{H}}- {\text{SiC}} 的 2 × 2 × 1 和 3 × 3 × 1 超胞的吸附、电子和热力学性质、\({{\alpha }}{{kern 1pt} {\text{ - }}{{kern 1pt} {\text{L}}{{{text{i}}}_{2}}{{{{\text{C}}}_{2}},\)\使用密度泛函理论(DFT)研究了硅-碳-锂体系的 4H 理论容量({text{L}}{{text{i}}_{n}}{text{S}}{{{text{i}}_{m}})。研究发现,4H-SiC 六方多晶型的理论容量超过了用作锂离子电池负极材料的石墨(370 mA h/g)。晶体化合物({{text{A}}}_{n}}{{text{B}}}_{m}})具有电子导电性。DFT 计算使用了广义梯度近似(GGA PBE)框架内的交换相关函数。计算了晶体结构参数、\({\text{L}}{{text{i}}}_{{text{ads}}}}}\) adatom 在 4H-SiC 衬底上的吸附能、电子能带结构以及\({{text{A}}}_{n}}{{text{B}}}_{m}}\)化合物超胞的热力学性质。确定了\({{text{L}}{{text{i}}}_{{text{ads}}}}}\)的热力学有利位置和4H-SiC〈Liads〉超级胞体的稳定构型。对Si-C-Li三元体系中\({{text{A}}}_{n}}{{text{B}}}_{m}}\)化合物的形成焓进行了DFT计算。计算得到的 \({{text{A}}}_{n}}{{text{B}}}_{m}}\)的特征与实验数据一致。利用({{text{A}}}_{n}}{{text{B}}}_{m}}\)化合物的标准热力学势以及这些化合物之间固相交换反应的能量变化,建立了硅-碳-锂浓度三角形中的平衡结点。构建了 298 K 时硅-碳-锂相图的等温段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
376
审稿时长
5.1 months
期刊介绍: Russian Journal of Physical Chemistry A. Focus on Chemistry (Zhurnal Fizicheskoi Khimii), founded in 1930, offers a comprehensive review of theoretical and experimental research from the Russian Academy of Sciences, leading research and academic centers from Russia and from all over the world. Articles are devoted to chemical thermodynamics and thermochemistry, biophysical chemistry, photochemistry and magnetochemistry, materials structure, quantum chemistry, physical chemistry of nanomaterials and solutions, surface phenomena and adsorption, and methods and techniques of physicochemical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信