Targeted weed management of Palmer amaranth using robotics and deep learning (YOLOv7).

IF 2.9 Q2 ROBOTICS
Frontiers in Robotics and AI Pub Date : 2024-10-14 eCollection Date: 2024-01-01 DOI:10.3389/frobt.2024.1441371
Amlan Balabantaray, Shaswati Behera, CheeTown Liew, Nipuna Chamara, Mandeep Singh, Amit J Jhala, Santosh Pitla
{"title":"Targeted weed management of Palmer amaranth using robotics and deep learning (YOLOv7).","authors":"Amlan Balabantaray, Shaswati Behera, CheeTown Liew, Nipuna Chamara, Mandeep Singh, Amit J Jhala, Santosh Pitla","doi":"10.3389/frobt.2024.1441371","DOIUrl":null,"url":null,"abstract":"<p><p>Effective weed management is a significant challenge in agronomic crops which necessitates innovative solutions to reduce negative environmental impacts and minimize crop damage. Traditional methods often rely on indiscriminate herbicide application, which lacks precision and sustainability. To address this critical need, this study demonstrated an AI-enabled robotic system, Weeding robot, designed for targeted weed management. Palmer amaranth (<i>Amaranthus palmeri S. Watson</i>) was selected as it is the most troublesome weed in Nebraska. We developed the full stack (vision, hardware, software, robotic platform, and AI model) for precision spraying using YOLOv7, a state-of-the-art object detection deep learning technique. The Weeding robot achieved an average of 60.4% precision and 62% recall in real-time weed identification and spot spraying with the developed gantry-based sprayer system. The Weeding robot successfully identified Palmer amaranth across diverse growth stages in controlled outdoor conditions. This study demonstrates the potential of AI-enabled robotic systems for targeted weed management, offering a more precise and sustainable alternative to traditional herbicide application methods.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513266/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1441371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Effective weed management is a significant challenge in agronomic crops which necessitates innovative solutions to reduce negative environmental impacts and minimize crop damage. Traditional methods often rely on indiscriminate herbicide application, which lacks precision and sustainability. To address this critical need, this study demonstrated an AI-enabled robotic system, Weeding robot, designed for targeted weed management. Palmer amaranth (Amaranthus palmeri S. Watson) was selected as it is the most troublesome weed in Nebraska. We developed the full stack (vision, hardware, software, robotic platform, and AI model) for precision spraying using YOLOv7, a state-of-the-art object detection deep learning technique. The Weeding robot achieved an average of 60.4% precision and 62% recall in real-time weed identification and spot spraying with the developed gantry-based sprayer system. The Weeding robot successfully identified Palmer amaranth across diverse growth stages in controlled outdoor conditions. This study demonstrates the potential of AI-enabled robotic systems for targeted weed management, offering a more precise and sustainable alternative to traditional herbicide application methods.

利用机器人技术和深度学习对帕尔默苋进行有针对性的杂草管理(YOLOv7)。
有效管理杂草是农艺作物面临的一项重大挑战,需要创新的解决方案来减少对环境的负面影响,并最大限度地减少对作物的损害。传统方法往往依赖于不加区分地施用除草剂,缺乏精确性和可持续性。为了满足这一关键需求,本研究展示了一种人工智能机器人系统--除草机器人,旨在进行有针对性的杂草管理。之所以选择帕尔默苋(Amaranthus palmeri S. Watson),是因为它是内布拉斯加州最棘手的杂草。我们利用最先进的物体检测深度学习技术 YOLOv7 开发了用于精确喷洒的全套堆栈(视觉、硬件、软件、机器人平台和人工智能模型)。除草机器人在使用所开发的龙门式喷雾器系统进行实时杂草识别和定点喷洒时,平均精确率达到 60.4%,召回率达到 62%。除草机器人在受控室外条件下成功识别了不同生长阶段的帕尔默苋。这项研究展示了人工智能机器人系统在有针对性地管理杂草方面的潜力,为传统除草剂施用方法提供了更精确、更可持续的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信